Workshop #3

Due: July 22^{nd} , 2011

Na	ame:								
to I	v v	ent. Sometimes she ar around to hotels and s	_				_	_	
		Hotel Rooms Rented	1	20	50	100			
		Demand Price	\$200	\$125	\$110	\$85			
		Supply Price	\$25	\$50	\$45	\$95			
roo	ms. However, she can	acy offers rooms at a random obtain 20 rooms at an at to find supply and de	averag	ge rate	of \$50	per ro	om per i	night.	
()	the demand function and a cubic for the supply function. Demand function: $p_d =$								
	Supply function: $p_s = $								
	The market equilibrium is $(q_E, p_E) = \Big(\underline{\hspace{1cm}}, \underline{\hspace{1cm}} \Big).$								
	If Stacy wants to rent 75 rooms, what price should she set for a hotel room? \$								
	If she aquires 75 rooms, what will her (average) price per room be? \$								
(b) Use your model for the demand function to find a revenue function. Use your supply to model the variable cost per room and the fact that Stacy has fixed costs of \$450 to find her cost function. Finally, use your revenue and cost functions to find profit, nevenue, marginal cost, and marginal profit functions.									per day
	Stacy has bre	eak even points.							
	These occur when sh	e rents					rooms.		
	Stacy's 15 th room br	ings in \$		(in rev	renue) p	per day	7.		
	Stacy maximizes her	profit when she rents			hotel 1	cooms.			

The corresponding optimal price (for the travelers) is \$______ per room per day.

Her maximum possible profit is \$_____ per day.

2. Use Excel to compute the following limits. If the limit does not exist write "DNE".

(a)
$$\lim_{x \to 3} \frac{x^3 - 3x^2 + x - 3}{|x - 3|} = \underline{\hspace{1cm}}$$

Note: The denominator is in absolute value bars. In Excel, "=ABS(A1)" would compute the absolute value of the number in cell A1.

(b)
$$\lim_{x \to 0} \frac{\ln(x+1)}{x} =$$

3. Recall that the **derivative** of f(x) is defined to be

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

where $\frac{f(x+h)-f(x)}{h}$ is called the **difference quotient** of f(x).

Let $f(x) = x^x$. Compute the difference quotient of f(x) when x = 2 and h = 0.5.

$$\frac{f(2+0.5) - f(2)}{0.5} = \underline{\hspace{1cm}}$$

Now use Excel to compute the limit as $h \to 0$. This shows that $f'(2) \approx \underline{\hspace{1cm}}$

Finally, redo these calculations when x = 0.2 and h = -0.1.

$$\frac{f(0.2 - 0.1) - f(0.2)}{-0.1} = \underline{\hspace{1cm}}$$

$$f'(0.2) \approx$$