Math 1030 Workshop #4 Name: ANSWER KEY

DUE: Tuesday, July 26th Please turn in a paper copy and SHOW YOUR WORK!

1. Use the limit definition of the derivative to find f'(z) if...
[You use should the rules we learned to double check your answer.]
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We can double check our answer: f(x) = 1/(2x — 1) = 2z —1)"! so f'(z) = —1(22 — 1)72(2)
(using the chain rule or more specifically the generalized power rule). Thus f’(z) = —2/(2z —1)?
(which matches our answer coming from the limit definition).

2. Find the equation of the line tangent to the graph of y = f(x) at @ = x¢ if...
(a) f(z)=a2® -4z +1and zg =1

e We need a point: z =1 so that y = f(1) =13 —4(1) + 1 = -2
e And aslope: 3’ = 322 — 4 so that 3’ = 3(1)> —4 = —1 (the derivative evaluated at = = 1

r=1
gives us the slope of the tangent at = = 1).

e We put this together using point-slope: y — yo = m(z — xg) so that y — (—2) = —1(x — 1)
which simplifies to y +2 = —x + 1

Answer: y=—z—1
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(b) J2) = 5 and ap =0
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e We need a point: = 0 so that y = = =—
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And a slope: y' = ————— so that = = =-2.
e And a slope: y e 1) so that 3| QO 12~ (12
e We put this together using point-slope and get: y — (—1) = —2(z — 0) which simplifies to

y+1=-2z

Answer: y = —2x — 1



3. Compute the derivative of each of the following functions. Please simplify your answers.

Note: I’ve boxed in acceptibly simplified answers.
(a) y=\x+7e" —21In(z) + 5 — 3z + 11
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the derivative of the denominator).
y = (322 — 22)(1 — ze®) — (23 — 22 + 4)((—1)e® + (—x)e%)
(1 — zew)?
_3a? — 2z — 3ae” + 22%e” + (—a® + 2? — 4)(—e" — ze”)
N (1 —ze®)?
_ 322 — 22 — 3x3e” + 202%e” + x3e” — 2%e” + 4e” + xte” — x3e” + dae”
N (1 — ze®)?
;L 322 — 2 + 4e® + dxe” + x%e” — 3x3e” + xte”
v = (1 — xer)?
or
, (3 —2) + (zf — 323 + 2% + 4x + 4)e®
y = )2
(1 —ze®)

(d) y = (In(2z + 1) + 15)%° We will need the chain rule (specifically the generalized power rule)

for the outer function (STUFF)® and then we’ll need to use the chain rule again on the function
In(STUFF).
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need to use the chain rule a few times.

) We should use laws of logarithms to break the function apart. Then we will

y = In(e®(z — 7)1/2) — In((2? 4 5)%) = In(e®®) + In((z — 7)*/?) — 61n(2? + 5) and finally y =
5z + (1/2) In(x — 7) — 61n(2% + 5). Now we can differentiate.
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