You may **skip ONE** of the following problems.

1. We have the following supply and demand functions:

$$p_s(x) = 30\ln(x+1) + 20$$
 and

$$p_d(x) = -0.1x^3 + 0.5x^2 - 2x + 150.$$

To find the Market equilibrium we set the supply and demand curves equal to each other and then plug the equilibrium quantity into either function.

$$30\ln(x+1)+20=-0.1x^3+0.5x^2-2x+150 \checkmark \implies q_E = 9.493.$$

30ln(x+1)+20 where x=9.493
$$\checkmark$$
 \implies $p_E = p_s(9.493) = p_d(9.493) = \90.52

Market equilibrium
$$(q_E, p_E) = (9.493, \$90.52)$$

Recall that consumer surplus is given by
$$\int_0^{q_E} p_d(q) dq - q_E \cdot p_E$$

(int -0.1x^3+0.5x^2-2x+150 from 0 to 9.493) - 9.493(90.52)
$$\checkmark$$

The consumer surplus is \$\\$414.08

2. Southern Freedonia has determined that their Lorentz curve is given by $L(x) = \frac{e^{x^2} - 1}{e - 1}$.

The first question asks us to solve: L(x) = 0.10.

$$(e^(x^2)-1)/(e-1) = 0.10 \checkmark \implies x = 0.39820.$$

The poorest 39.820% of the population receive 10% of the income.

Recall that the Gini Index is given by $1 - 2 \int_0^1 L(x) dx$.

1-2 int (e^(x^2)-1)/(e-1) from 0 to 1
$$\checkmark$$

Southern Freedonia's Gini Index is $\underline{0.461495}$.

3. We know that $P'(q) = -4q^3 + 30q^2 + 50$ for some profit function P(q). In addition, we also know that q = 10 is a break even quantity for P(q).

Since we have P'(q), we can find the P(q) up to an arbitrary constant using: $P(q) = \int P'(q) dq$.

int
$$-4q^3+30q^2+50 \checkmark \implies P(q) = -q^4+10q^3+50q+C$$

Next, we know that there is a break even quantity at q = 10. This means that P(10) = 0. If we plug q = 10 into P(q), we should get zero. This allows us to find the value of C.

$$-q^4+10q^3+50q+C$$
 where $q=10 \checkmark \implies 0 = P(10) = C + 500$. Therefore, $C = -500$.

$$P(q) = -q^4 + 10q^3 + 50q - 500$$