Due: July 18th, 2013

1. Frank builds modular homes. After extensive research he has collected the following data:

Houses Built	1	10	70	150	15	90	145
Demand Price	\$250,000	\$175,000	\$135,000	\$115,000			
Supply Price					\$75,000	\$125,000	\$180,000

For example, if Frank charges \$175,000 for his modular homes, he can expect to sell about 10. Also, if he is willing to pay an average of \$125,000 per house, he can get 90 built.

(a)	Use the	table of	data to	find	supply	and	demand	price	functions.	Use a	power	model	for	the
	demand	function	and a	n exp	onenti	al m	odel for	the su	ipply funct	ion.				

(b) Use your model for the demand function to find a revenue function. Use your supply function to model the variable cost per house and the fact that Frank has fixed costs of \$65,000 to find his cost function. Finally, use your revenue and cost functions to find profit, marginal revenue, marginal cost, and marginal profit functions.

Frank has _____ break even points. These occur at q = ____ [Round all break even quantities to 3 decimal places.]

Frank's 35^{th} house brings in \$_____ revenue.

The 35^{th} house costs him \$_____ to build.

Frank maximizes his profit when he sells _____ houses.

Frank needs to sell each house for \$_____ to maximize his profit.

His maximum possible profit is \$_____ .

(c) Does Frank's cost function have a minimum? In a few sentences explain why or why not.

2. Use Excel to compute the following limits. If the limit does not exist write "DNE".

(a) SKIP ME
$$\lim_{x \to -4} \frac{e^{-x}}{\ln(x^2 - 16)} = \underline{\text{SKIP THIS PART}}$$

(b)
$$\lim_{x \to 5} \frac{1}{(x-5)^3} = \underline{\hspace{1cm}}$$

3. Recall that the **derivative** of f(x) is defined to be

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

where $\frac{f(x+h)-f(x)}{h}$ is called the **difference quotient** of f(x).

Let
$$f(x) = 3 - (x - 2)^2 + 2|x - 2|$$
.

(a) Compute the difference quotient of f(x) when x = 1.5 and h = 0.25. [Note: "|x - 2|" refers to the absolute value of x - 2. In Excel, "=ABS(A1)" would compute the absolute value of the number in cell A1.]

Now use Excel to compute the limit as $h \to 0$. This shows that $f'(1.5) \approx \underline{\hspace{1cm}}$.

(b) Use Excel to repeat the previous part for x=2 (compute f'(2)). Does the limit $(h \to 0)$ of the difference quotient at x=2 exist? If it does exist, what is it? If it does not exist, why not? Explain your answer in a sentence or two.