Math 1030 Workshop #4 Name: _ANSWER KEY

DUE: Tuesday, July 231‘d Please turn in a paper copy and SHOW YOUR WORK!

1. Use the limit definition of the derivative to find f’(z) if...
[You use should the rules we learned to double check your answer.]
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Answer: f'(z) =322 + 2z (This is easily verified using our formulas for differentiation.)

(b) f(z) = ﬁ Note that f () = <x+hl>2_2
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This result can be verified using either the quotient rule: f'(x) = 0 2 ) 2)2( 2) or using a bit of algebra:
72 —
f(x) = (2% — 2)~! and then the chain rule: f'(x) = (—1)(z? — 2)~2(2z). Anyway we go about it we find that. ..
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Answer: f'(z) = ﬁ

2. Find the equation of the line tangent to the graph of y = f(z) at = z if...
(a) f(x) =2+ 22+ 1 and xg = —2

To find the equation of the tangent line we need a point and a slope. We get our point by plugging xo = —2 into
f(z) and we get our slope by plugging z¢o = —2 into f'(x).

First, f(—2) = (-2)* +(-2)2+ 1= -8+ 4+ 1 = —3. So our line passes through (z,y) = (-2, —3).

Next, f/(z) = 32% + 2z so f'(—2) = 3(—2)? + 2(—2) = 12 — 4 = 8. So our line has slope m = 8.

Finally, using point-slope we get y — (—3) = 8(z — (—2)) so y + 3 = 8(x + 2) and so y + 3 = 8z + 16 and thus...

Answer: The equation of the tangent line is |y = 8z 4+ 13|

(b) f(z) = —

2 —

and g =1

To find the equation of the tangent line we need a point and a slope. We get our point by plugging x¢g = 1 into
f(x) and we get our slope by plugging xg = 1 into f'(x).
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First, f(1) = T 5= 1= —1. So our line passes through (z,y) = (1,—1).



—2x —2(1 -2
Next, f/(x) = Ry so f'(1) = iz _( 2))2 = 1) = —2. So our tangent has slope m = —2.

Finally, using point-slope we get y — (=1) = =2(z — 1) so y + 1 = —22 + 2 and thus. ..

Answer: The equation of the tangent line is |y = —2z 4+ 1|

3. Compute the derivative of each of the following functions. Please simplify your answers.

(a)

y= ¥z —12¢" +4In(z) + 2 + 9z — 2
First some algebra: y = 2'/3 — 12¢* + 4In(z) + =7 + 9z — 2
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y' = 5372/3 —12¢" + . +(=7Nz 8 +9

Notes: The derivative of each term follows from either a basic formula or the power rule.

y= (2" +3)In(bz + 1)
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y =|725In(5z + 1) + (27 + 3) (5)

Notes: Use the product rule with first part 27 + 3 and second part In(5x + 1). We use the chain rule when
differentiating In(52 + 1) with outside function In(BLAH) and inside function 5z + 1. We couldn’t simplify
In(52 4 1) since there are 2 terms added together — laws of logs won’t help here.
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(6 —2%)In(z) + 22 + 2+ 3
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Notes: Use the quotient rule. Also, we need the product rule to help take the derivative of In(x). The rest is
algebra.
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Notes: Use the chain rule (specifically the “generalized power rule”) with outside function BLAH' and inside
function 1+ 3e*”. To differentiate 3¢ we need the chain rule again. This time 3eBM*H is our outside function
and z? is our inside function.

First some algebra: y = In (7(z® +1)°) — In (e’h(x - 2)1/2>
=1In(7) + In ((2* +1)°) — (szr) +1n ((9: - 2)1/2)>
=1In(7) +5In(z® + 1) + 2z — %ln(ac —2)
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Notes: The derivative of In(7) is 0 since In(7) is a constant (it has no #’s in it!). 5In(z3 + 1) can be differentiated
using the chain rule the same is true of 3 In(z — 2).



