ame: ANSWER KEY

DUE: Wednesday, July 22nd Please turn in a paper copy and SHOW YOUR WORK!

- 1. Use the limit definition of the derivative to find f'(x) if... [You use should the rules we learned to double check your answer.]
 - (a) $f(x) = 3x^2 5x + 12$ Note that $f(x+h) = 3(x+h)^2 - 5(x+h) + 12$. Also, $3(x+h)^2 = 3(x+h)(x+h) = 3(x^2 + 2xh + h^2) = 3x^2 + 6xh + 3h^2$.

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\left(3(x+h)^2 - 5(x+h) + 12\right) - \left(3x^2 - 5x + 12\right)}{h}$$

$$= \lim_{h \to 0} \frac{3x^2 + 6xh + 3h^2 - 5x - 5h + \cancel{\cancel{1}} - 3x^2 + 5x - \cancel{\cancel{1}}}{h}$$

$$= \lim_{h \to 0} \frac{\cancel{\cancel{h}} (6x + 3h - 5)}{\cancel{\cancel{h}}} = 6x + 3(0) - 5$$

Answer: f'(x) = 6x - 5 (This is easily verified using our formulas for differentiation.)

(b)
$$f(x) = \frac{1}{(x-2)^2}$$
 Note that $f(x+h) = \frac{1}{(x+h-2)^2}$. Also, $(x+h-2)^2 = (x+h-2)(x+h-2) = x(x+h-2) + h(x+h-2) - 2(x+h-2) = x^2 + xh - 2x + hx + h^2 - 2h - 2x - 2h + 4 = x^2 + 2xh + h^2 - 4x - 4h + 4$.

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\frac{1}{(x+h-2)^2} - \frac{1}{(x-2)^2}}{h}$$

$$= \lim_{h \to 0} \frac{\frac{1}{(x+h-2)^2} \cdot \frac{(x-2)^2}{(x-2)^2} - \frac{1}{(x-2)^2} \cdot \frac{(x+h-2)^2}{(x+h-2)^2}}{h} = \lim_{h \to 0} \frac{\frac{(x-2)^2}{(x+h-2)^2} - \frac{(x+h-2)^2}{((x-2)^2(x-h-2)^2}}{h}$$

$$= \lim_{h \to 0} \frac{\frac{(x-2)^2 - (x+h-2)^2}{(x+h-2)^2(x-2)^2}}{\frac{h}{1}} = \lim_{h \to 0} \frac{x^2 - 4x + 4 - (x^2 + 2xh + h^2 - 4x - 4h + 4)}{h((x+h-2)^2(x-2)^2)}$$

$$= \lim_{h \to 0} \frac{\cancel{x}^2 - \cancel{x} + \cancel{A} - \cancel{x}^2 - 2xh - h^2 + \cancel{x} + 4h - \cancel{A}}{h(x+h-2)^2(x-2)^2} = \lim_{h \to 0} \frac{\cancel{h}(-2x - h + 4)}{\cancel{h}(x+h-2)^2(x-2)^2}$$

$$= \frac{(-2x - 0 + 4)}{(x+0-2)^2(x-2)^2} = \frac{-2(x-2)}{(x-2)^4} = \frac{-2}{(x-2)^3}$$

This result can be verified using either the quotient rule: $f'(x) = \frac{0(x-2)^2 - 1(2(x-2)^1(1))}{((x-2)^2)^2} = \frac{-2(x-2)}{(x-2)^4} = \frac{-2}{(x-2)^3}$ or using a bit of algebra: $f(x) = (x-2)^{-2}$ and then the chain rule: $f'(x) = (-2)(x-2)^{-3}(1) = \frac{-2}{(x-2)^3}$. Anyway we go about it we find that...

Answer: $f'(x) = \boxed{\frac{-2}{(x-2)^3}}$

2. Find the equation of the line tangent to the graph of y = f(x) at $x = x_0$ if...

(a)
$$f(x) = 3x^2 - 5x + 12$$
 and $x_0 = -1$

To find the equation of the tangent line we need a point and a slope. We get the point by plugging $x_0 = -1$ into f(x) and we get our slope by plugging $x_0 = -1$ into f'(x).

First, $f(-1) = 3(-1)^2 - 5(-1) + 12 = 3 + 5 + 12 = 20$. So our line passes through the point (x, y) = (-1, 20).

Next, f'(x) = 6x - 5 so f'(-1) = 6(-1) - 5 = -11. So our line has slope m = -11.

Finally, using point-slope we get y - 20 = -11(x - (-1)) so y - 20 = -11(x + 1) and so y = -11x - 11 + 20 and thus...

Answer: The equation of the tangent line is y = -11x + 9

(b)
$$f(x) = \frac{1}{(x-2)^2}$$
 and $x_0 = 3$

To find the equation of the tangent line we need a point and a slope. We get the point by plugging $x_0 = 3$ into f(x) and we get our slope by plugging $x_0 = 3$ into f'(x).

First,
$$f(3) = \frac{1}{(3-2)^2} = \frac{1}{1^2} = 1$$
. So our line passes through the point $(x,y) = (3,1)$.

Next,
$$f'(x) = \frac{-2}{(x-2)^3}$$
 so $f'(3) = \frac{-2}{(3-2)^3} = \frac{-2}{1^3} = -2$. So our line has slope $m = -2$.

Finally, using point-slope we get y-1=-2(x-3) so y-1=-2x+6 and thus...

Answer: The equation of the tangent line is y = -2x + 7

3. Compute the derivative of each of the following functions. Please simplify your answers.

(a)
$$y = \sqrt[5]{x} + 3\ln(x) + 7e^x - \frac{11}{x^{10}} - 5x + 123$$

First some algebra: $y = x^{1/5} + 3\ln(x) + 7e^x - 11x^{-10} - 5x + 123$

$$y' = \boxed{\frac{1}{5}x^{-4/5} + \frac{3}{x} + 7e^x + 110x^{-11} - 5}$$

Notes: The derivative of each term follows from either a basic formula or the power rule.

(b)
$$y = e^{-4x} \ln(x)$$

$$y' = -4e^{-4x} \ln(x) + \frac{e^{-4x}}{x}$$

Notes: Use the product rule with first part e^{-4x} and second part $\ln(x)$. We use the chain rule when differentiating e^{-4x} with outside function e^{BLAH} and inside function -4x. The second term was: $e^{-4x} \cdot \frac{1}{x}$ which we multiplied together in the final answer.

(c)
$$y = \frac{x^2 - 5x + 1}{xe^x}$$

$$y' = \frac{(2x-5)(xe^x) - (x^2 - 5x + 1)((1)e^x + xe^x)}{(xe^x)^2} = \frac{2x^2e^x - 5xe^x - (x^2 - 5x + 1)(e^x + xe^x)}{x^2(e^x)^2}$$

$$= \frac{2x^2e^x - 5xe^x - x^2e^x + 5xe^x - e^x - x^3e^x + 5x^2e^x - xe^x}{x^2(e^x)^2} = \frac{-x^3e^x + 6x^2e^x - xe^x - e^x}{x^2(e^x)^2}$$

$$= \frac{(-x^3 + 6x^2 - x - 1)e^x}{x^2(e^x)^{\frac{3}{2}}} = \frac{-x^3 + 6x^2 - x - 1}{x^2e^x}$$

Notes: Use the quotient rule. Also, we need the product rule to help take the derivative of xe^x . The rest is algebra.

(d)
$$y = \left(\ln(3x+1) + 55\right)^{100}$$

$$y' = 100 \left(\ln(3x+1) + 55 \right)^{99} \frac{1}{3x+1} (3) = \boxed{\frac{300 \left(\ln(3x+1) + 55 \right)^{99}}{3x+1}}$$

Notes: Use the chain rule (specifically the "generalized power rule") with outside function $BLAH^{100}$ and inside function $\ln(3x+1)+55$. To differentiate $\ln(3x+1)$ we need the chain rule again. This time $\ln(BLAH)$ is our outside function and 3x+1 is our inside function.

(e)
$$y = \ln\left(\frac{4(x^5 + 10)^3 e^{2x}}{\sqrt{x}(x - 8)^{10}}\right)$$

First some algebra:
$$y = \ln\left(4(x^5+10)^3e^{2x}\right) - \ln\left(\sqrt{x}\,(x-8)^{10}\right) = \ln(4) + \ln(x^5+10)^3 + \ln(e^{2x}) - \ln\left(x^{1/2}\right) - \ln(x-8)^{10}$$

 $= \ln(4) + 3\ln(x^5+10) + \ln(e^{2x}) - \frac{1}{2}\ln(x) - 10\ln(x-8) = \ln(4) + 3\ln(x^5+10) + 2x - \frac{1}{2}\ln(x) - 10\ln(x-8)$
 $y' = 0 + 3\frac{1}{x^5+10}(5x^4) + 2 - \frac{1}{2} \cdot \frac{1}{x} - 10\frac{1}{x-8}(1) = \boxed{\frac{15x^4}{x^5+10} + 2 - \frac{1}{2x} - \frac{10}{x-8}}$

Notes: The derivative of $\ln(4)$ is 0 since $\ln(4)$ is a constant (it has no x's in it!). $3\ln(x^5+10)$ can be differentiated using the chain rule. The same is true of $-10\ln(x-8)$.