DUE: Thursday, July 30st Please turn in a paper copy and SHOW YOUR WORK!

1. Apple has rolled out its latest product...the iPen. The local iStore has collected the following iData about their iProduct's demand:

iPens Sold	15	100	200	350
Price	\$1,000	\$225	\$100	\$50

(a) Compute elasticity (round to 3 decimals places):

iPens Sold	15		100		200		350	
Price	\$1,000		\$225		\$100		\$50	
Elasticity								× × × ×

(b) Model this demand price (in Excel) using an **power** trendline.

 $p_d(q) =$

According to this model, the store will sell iPens if they set their price at \$75.

When $p_d(q) = \$75$, our point elasticity (using this model) is $\varepsilon =$ ______ (round to 3 decimal places).

<u>Circle the correct answer:</u> The store is currently charging \$75 for an iPen and wants to **increase** its revenue,

they should raise / lower their price.

What quantity and price will **maximize** revenue? $q = \underline{\hspace{1cm}} p = \underline{\hspace{1cm}}$

[There is <u>no maximum</u> for the corresponding revenue function!]

2. Suppose that some items point elasticity is $\varepsilon = 1.5$ at some price. If the price is lowered by $5\%, \ldots$

the quantity is lowered / raised by

and revenue is lowered / raised by ______.

[Both answers should be percentages rounded to 3 decimal places.]

3. Kyle is painting a very odd wall. Its height varies quite a lot. He needs to estimate the square footage of the wall so he can figure out how much paint to buy. Suppose that the wall is 30 feet long. Let x be the number of feet from the start of the wall and y be the height (in feet) of the wall as measured by Kyle...

x =											
y =	5	7	8	7	10	9	6	5	4	6	7

Approximate the area of this wall in 2 different ways: (1) Using a right hand rule approximation with n = 10 rectangles and (2) Using Simpson's rule with n = 10. [Round each answer to 4 decimal places.]

Right hand rule:

Simpson's rule:

4.	Suppose that $R(t) = (t + 0.5)^3 e^{-t}$ models the construction rate of micro-houses (in millions of houses built per year) t is the number of years since January 1, 2015.								
	When (after the initial peak) will the construction rate drop to 10,000 houses per year? $t = {[\text{Round to 3 decimal places.}]}$								
	How many micro-houses will be built after January 1, 2025?								
	When will the $5,000,000^{\text{th}}$ micro-house be completed? [Give the month and year.]								
	Alpha Commands used / integrals computed:								
5.	After surveying the residents of Raccoon City, we have found that the lifespan of an average citizen is 35 years with a standard deviation of 3. Assume that these lifespans are normally distributed.								
	What percentage of residents live between 20 and 40 years? [Answer in the form: XXX.XXX%]								
	If Raccoon City has 10,000,000 residents, how many live more than 50 years?								
	What is the cut-off determining the 10% with the shortest lifespans? [Round to 3 decimal places.]								
	Alpha Commands used / integrals computed:								