
Math 1110 Taylor Polynomials Supplement

Approximation is a major theme of calculus. In particular, we seek to understand a non-linear function in terms
of a flattened out linearized function. If we linearize our function at a point, then the graph of its linearization is
called a tangent line (based at that point) and the slope of the tangent line is the derivative of our function.

Sometimes a linear approximation is not good enough for our purposes. Thus we should develop higher order
approximations. A first order approximation is called a linearization and a second order approximation is called a
quadratic approximation. More generally these as well as higher order approximations are called Taylor polynomials.
In second semester calculus these are extended to infinite sums called series. In turns out that in many cases Taylor
series can be used to define our most familiar functions.

We begin by recalling the definition of a linearization and tangent.

Definition: Suppose f(x) is differentiable at x = a (i.e., f ′(a) exists). Then L(x) = f(a) + f ′(a)(x − a) is the
linearization of f(x) based (or centered) at x = a. The graph of this linearization is the tangent line of f(x)
based at x = a.

Example: Let f(x) = x2. Then f ′(x) = 2x. This means f(3) = 9 and f ′(3) = 6 so that the linearization of
f(x) = x2 based at x = 3 is L(x) = f(3) + f ′(3)(x− 3) = 9 + 6(x− 3) = 6x− 9. Thus the graph of y = 6x− 9 gives
us the tangent line of f(x) = x2 at x = 3.

Example: Let g(x) = sin(x). Then since g′(x) = cos(x), we have L(x) = sin(0) + cos(0)(x− 0) = 0 + 1(x− 0) = x
is the linearization of the sine function based at x = 0. This linear approximation is often used by Physicists when
an angle is “small”. In particular, sin(0.1) = g(0.1) ≈ L(0.1) = 0.1.

The notion of a “good” linearization can be turned around to define what we mean by differentiability. Say
L(x) = A + B(x − a). Then we might say L(x) is a good linear approximation of f(x) if f(x) − L(x) is small (in

some sense) when x is close to a. More precisely we want lim
x→a

f(x)− L(x)

x− a
= 0. In other words, we want f(x) and

L(x) to match up to first order terms locally. If this definition is pursued, one can show that a good approximation
exists only if f ′(a) exists and we have A = f(a) and B = f ′(a). Briefly, we only have a “good” approximation at
x = a when f(x) is differentiable and this good approximation must be the linearization L(x) = f(a) + f ′(a)(x− a).

Now we turn to a higher order approximation. Notice that if L(x) = f(a) + f ′(a)(x− a), then L(a) = f(a) and
L′(a) = f ′(a). Suppose that we want an approximation, say Q(x), such that Q(a) = f(a), Q′(a) = f ′(a), and Q′′(a) =
f ′′(a). If we demand that Q′′(x) is the number f ′′(a), then Q′(x) would need to be linear: Q′(x) =??+f ′′(a)x which
could be rewritten asQ′(x) =???+f ′′(a)(x−a) but if we wantQ′(a) = f ′(a) we must haveQ′(x) = f ′(a)+f ′′(a)(x−a).

If we know about antiderivatives, we can conclude that Q(x) =??? + f ′(a)(x− a) +
f ′′(a)

2
(x− a)2 and since we want

Q(a) = f(a) we must have Q(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2
(x− a)2.

Definition: Suppose f(x) is twice differentiable at x = a. Then Q(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2
(x− a)2 is the

quadratic approximation of f(x) based (or centered) at x = a.

From our discussion above, this is the unique quadratic polynomial which matches f(x) and its first two derivatives
at the point x = a.

Example: Let f(x) = x3. Then f ′(x) = 3x2 and f ′′(x) = 6x. The quadratic approximation of f(x) = x3 centered

at x = 1 is Q(x) = f(1) + f ′(1)(x− 1) +
f ′′(1)

2
(x− 1)2 = 1 + 3(x− 1) + 3(x− 1)2.

Example: Let g(x) = cos(x). Then g′(x) = − sin(x) and g′′(x) = − cos(x). So Q(x) = cos(0) − sin(0)x +
− cos(0)

2
x2 = 1 − 1

2
x2 is the quadratic approximation of cosine based at x = 0. Since x = 0 is a critical point

for cosine, we have no linear term. Notice that the graph of this quadratic approximation is a parabola opening
downward. This reveals that x = 0 is a local maximum for cosine.

Extending the above example gives us the second derivative test. Suppose that f(x) has a second derivative at

x = a and that x = a is a critical point (so f ′(a) = 0). Then f(x) ≈ Q(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2
(x− a)2 =

f(a) +
f ′′(a)

2
(x − a)2. The graph of Q(x) is a parabola with vertex at (a, f(a)). It opens up or down according to

the sign of f ′′(a). Thus since f(x) ≈ Q(x) near x = a, it is reasonable to conclude that x = a is a local minimum if
f ′′(a) > 0 and a local maximum if f ′′(a) < 0.



We now generalize to arbitrary order approximations. First, recall that k! = k(k − 1)(k − 2) · · · 3 · 2 · 1 is the
factorial function. For example, 1! = 1, 2! = 2, 3! = 3 · 2 · 1 = 6, 4! = 4 · 3 · 2 · 1 = 24 etc. Since an empty product
should be the multiplicative identity, one defines 0! = 1 (admittedly this seems strange at first glance).

Definition: Let f(x) have derivatives up to order n defined at x = a. Then the nth-order Taylor polynomial
centered at x = a of f(x) is

P (x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2
(x− a)2 +

f ′′′(a)

3!
(x− a)3 + · · ·+ f (n)

n!
(x− a)n =

n∑
k=0

f (k)

k!
(x− a)k

Taylor polynomials centered at x = 0 are traditionally called Maclaurin polynomials. Notice that a linearization is
just a first order Taylor polynomial and a quadratic approximation is just a second order Taylor polynomial.

Example: Let f(x) = ln(x). Then f ′(x) = 1/x = x−1, f ′′(x) = −x−2, f ′′′(x) = 2x−3, and f (4)(x) = −6x−4. Thus
f(1) = ln(1) = 0, f ′(1) = 1, f ′′(1) = −1, f ′′′(1) = 2, and f (4)(1) = −6. This means that the fourth order Taylor
polynomial for the natural logarithm (centered at x = 1) is:

P (x) = 0 + 1(x− 1) +
−1

2
(x− 1)2 +

2

3!
(x− 1)3 +

−6

4!
(x− 1)4 = (x− 1)− (x− 1)2

2
+

(x− 1)3

3
− (x− 1)4

4
.

Theorem: If P (x) is the nth-order Taylor polynomial of f(x) centered at x = a, then we have f(a) = P (a),

f ′(a) = P ′(a), . . . , f (n)(a) = P (n)(a). Conversely, suppose P (x) is a polynomial of order n or less and f(a) = P (a),
f ′(a) = P ′(a), . . . , f (n)(a) = P (n)(a). Then P (x) is the nth-order Taylor polynomial of f(x) centered at x = a.

The proof of this theorem is straight forward (but we skip it). It tells us that the Taylor polynomial centered at
x = a is only way to approximate f(x) with a polynomial of order (at most) n so that this polynomial’s derivative
data at x = a matches f(x) (up to order n).

Example: Suppose P (x) = 5+4(x+8)2− (x+8)3 is the third order Taylor polynomial centered at x = −8 for some
mystery function f(x). Then we must have f(−8) = P (−8) = 5, f ′(−8) = P ′(−8) = 0, f ′′(−8) = P ′′(−8) = 4 ·2 = 8,
and f ′′′(−8) = P ′′′(−8) = (−1) · 3! = −6. And that is all we can say about f ’s values! We can draw no conclusions
about f (4)(−8) or f(2) or f ′(1) etc.

Example: Find the fourth order Taylor polynomial, centered at x = 2 for g(x) = x4. This is easy. Answer:
P (x) = x4. Why? Well, g(x) is a fourth order polynomial and it matches all of the derivative data it needs to, so
by the above theorem it must be the Taylor polynomial! What is the 100-th order Taylor polynomial of g(x) = x4

centered at x =
√
π? Easy, it’s just g(x) = x4.

Likewise, if h(x) = x2 − 3x + 1. Then the zero-th order Maclaurin polynomial for h(x) is 1, the first order
Maclaurin polynomial is −3x+ 1, and the Macluarin polynomials of degree two or higher are just h(x) = x2− 3x+ 1
itself!

Sometimes we need to know exactly how good our estimate is. The following theorem does just that and is called
Taylor’s Remainder Formula.

Theorem: Suppose f(x) is (n+ 1)-times differentiable on an interval containing a. Then for any x in that interval
there is some number between x and a, say ζx, such that:

f(x)− P (x) = f(x)−
(
f(a) + f ′(a)(x− a) + · · ·+ f (n)(a)

n!
(x− a)n

)
=
f (n+1)(ζx)

(n+ 1)!
(x− a)n+1

where P (x) is the n-th order Taylor polynomial of f(x) based at x = a.

Possibly surprisingly, this theorem is not terribly hard to prove (yet we still skip the proof here). It follows quickly
from Rolle’s theorem. What this tells us is that f(x) and P (x) are nearly identical. We just need to add in one more
term – except that term’s derivative may need to be evaluated at ζx (possibly near but not quite at a).

This formula says if we know how big the (n+ 1)-st derivative can be, we can get an estimate of how far off our
Taylor polynomial is relative to how far we have strayed from our base point x = a.

Example: The fourth order Maclaurin polynomial for sine is P (x) = x− x3

6
. Note that the fifth derivative of sine

is cosine. So Taylor says sin(x) − P (x) =
cos(ζx)

5!
(x − 0)5 =

cos(ζx)

120
x5 for some ζx between x and 0. But cosine

is at most 1. Thus | sin(x) − P (x)| ≤ 1

120
|x|5. For example, sin(0.1) ≈ P (0.1) = 0.0998333 · · · . How good is this

approximation? Taylor says its error is less than
(0.1)5

120
≈ 8.333 · · · × 10−8. So at least 6 decimals must match. In

fact, sin(0.1) = 0.0998334166 · · · . Thus this cubic polynomial is approximating sine quite well! (At least for small
x’s.)

Example: Approximate e (Euler’s number) out to 3 decimals. We have P (x) = 1 + x +
x2

2
+ · · ·+ xn

n!
is the n-th

order Maclaurin polynomial for f(x) = ex. Suppose we at least know e < 3. Then f (n+1)(ζ1) = eζ1 ≤ e1 < 3



for 0 ≤ ζ1 ≤ 1. Thus if we wish to approximate f(1) = e1 = e with P (1), Taylor says our error is no more than
f (n+1)(ζ1)

(n+ 1)!
(1 − 0)n+1 <

3

(n+ 1)!
. We want the error to be smaller than 10−3 so our answer is correct out to 3

digits. We need
3

(n+ 1)!
< 10−3 so that 3 × 103 = 3000 < (n + 1)!. Since 7! = 5040, n = 6 should work for us.

So e ≈ 1 + 1 +
1

2
+ · · · + 1

6!
= 1 + 1 +

1

2
+

1

6
+

1

24
+

1

120
+

1

720
= 2.7180555 · · · . Note: e = 2.7182818 · · · so our

approximation is correct to 3 digits exactly!

Taylor polynomials also give us a way to extend our second derivative test. Recall that the second derivative
test does not apply when the second derivative is zero at a critical point. We now offer a test that overcomes this
problem.

Theorem: (n-th Derivative Test) Let f(x) be a function such that f (n)(a) exists and f ′(a) = f ′′(a) = · · · =

f (n−1)(a) = 0 (i.e., the first n− 1 derivatives of f vanish at x = a) but f (n)(a) 6= 0. We have the following:

• If n is odd, then x = a is not a local extreme (it is neither a local minimum nor a local maximum).

• If n is even and f (n)(a) > 0, then x = a is a local minimum.

• If n is even and f (n)(a) < 0, then x = a is a local maximum.

Proof idea: The n-th order Taylor polynomial of f(x) based at x = a is P (x) = f(a) +
f (n)(a)

n!
(x − a)n (since all

lower order derivatives are zero). Near x = a, higher powers of x− a are much closer to zero than lower powers, so
(x−a)n dominates (x−a)n+1. Thus the Taylor remainder (a multiple of (x−a)n+1) is small enough that it does not

matter. Therefore, the graphs of f(x) and P (x) = f(a) +
f (n)(a)

n!
(x − a)n are almost the same near x = a. Notice

that x − a, (x − a)3, (x − a)5, etc. do not have an extrema at x = a while (x − a)2, (x − a)4, etc. do. Thus if n
is odd, x = a is not an extremum. If n is even, x = a is a local extreme. Moreover, this extrema is a minimum or
maximum according to whether the coefficient of (x− a)n is positive or negative.

Example: f(x) = (x − 3)4 has a critical point at x = 3. Notice that f ′(x) = 4(x − 3)3, f ′′(x) = 12(x − 2)2, and
f ′′′(x) = 24(x − 2) are zero at x = 3. However, f (4)(x) = 24 so f (4)(3) = 24 > 0 (our first non-zero derivative has
even order and is a positive number). Thus x = 3 is a local minimum. On the other hand, f ′(10) = 4(10− 3)3 6= 0.
Thus since our first non-zero derivative at x = 10 is of odd order (i.e., order 1), our test says x = 10 is neither a
minimum nor a maximum. This really is not a surprise since x = 10 is not even a critical point!

Homework:

1. Compute the quadratic approximation of f(x) = ex based at x = 0 (i.e., the second order Maclaurin polyno-
mial).

2. Find the third order Taylor polynomial of f(x) = ln(x− 2) based at x = 3.

3. Find the third order Maclaurin polynomial of f(x) = arctan(x).

4. Find Taylor polynomials based at x = −1 of f(x) = x3 of all possible orders.

5. Compute the fifth order Maclaurin polynomials for sine, cosine, and ex.

6. Suppose f(x) = x4 + 3x2 − x+ 1. What is the 10-th order Taylor polynomial of f(x) based at x = −7?

7. Suppose P (x) = 5 − 4(x + 1) + 2(x + 1)3 − (x + 1)4 is the fifth order Taylor polynomial based at x = −1 for
f(x). Find f(−1), f ′(−1), f ′′(−1), f ′′′(−1), and f (4)(−1).

8. Suppose P (x) = x3 is the fourth order Taylor polynomial based at x = 2 for f(x). Find f(2), f ′(2), f ′′(2),
f ′′′(2), and f (4)(2). What about f (5)(2)? How about f ′(3)?

9. Use Taylor’s remainder formula to explain why if P (x) is a Taylor polynomial of order k where k ≥ n based at
x = a for a polynomial f(x) of order n, then P (x) = f(x).

10. Approximate cos(0.1) using a fourth order Maclaurin polynomial. Use Taylor’s remainder formula to estimate
the possible error.



Answers:

1. All derivatives of f(x) = ex are just itself. Thus f (k)(0) = e0 = 1. So Q(x) = 1 + 1 · x+
1

2
· x2 =

1

2
x2 + x+ 1.

2. We have f ′(x) =
1

x− 2
= (x − 2)−1, f ′′(x) = −(x − 2)−2, and f ′′′(x) = 2(x − 2)−3. Thus f(3) = ln(3 − 2) =

ln(1) = 0, f ′(3) = (3 − 2)−1 = 1, f ′′(3) = −(3 − 2)−2 = −1, and f ′′′(3) = 2(3 − 2)−3 = 2. Therefore,

P (x) = 0 + 1(x− 3) +
−1

2
(x− 3)2 +

2

3!
(x− 3)3 = (x− 3)− 1

2
(x− 3)2 +

1

3
(x− 3)3.

One might (correctly) guess that the n-th order Taylor polynomial based at x = 3 would be:

P (x) = (x− 3)− 1

2
(x− 3)2 +

1

3
(x− 3)3 − 1

4
(x− 3)4 + · · · ± 1

n
(x− 3)n.

3. Recall that a Maclaurin polynomial is just a Taylor polynomial based at x = 0. Taking derivatives we get:

f ′(x) =
1

x2 + 1
, f ′′(x) =

−2x

(x2 + 1)2
, and f ′′′(x) =

−2(x2 + 1)2 + 2x(2)(x2 + 1)2x

(x2 + 1)4
so that f(0) = arctan(0) = 0,

f ′(0) =
1

02 + 1
= 1, f ′′(x) =

−2(0)

(02 + 1)2
, and f ′′′(0) =

−2(02 + 1)2 + 0

(02 + 1)4
= −2.

Therefore, P (x) = 0 + 1 · x+
0

2
· x2 +

−2

3!
· x3 = x− 1

3
x3.

4. Computing derivatives: f ′(x) = 3x2, f ′′(x) = 6x, f ′′′(x) = 6, and f (k)(x) = 0 for k > 3 so that f(−1) = −1,
f ′(−1) = 3, f ′′(−1) = −6, f ′′′(−1) = 6, and f (k)(−1) = 0 for k > 3. Therefore, the zero-th order polynomial is

P (x) = −1, first order is P (x) = −1+3(x−1), second order is P (x) = −1+3(x−1)+
−6

2
(x−1)2 = −1+3(x−

1)−3(x−1)2, and third order is P (x) = −1+3(x−1)+
−6

2
(x−1)2+

6

3!
(x−1)3 = −1+3(x−1)−3(x−1)2+(x−1)3

which is actually equal to x3 itself! Higher order terms contribute nothing since f (k)(−1) = 0 for k > 3. In
fact, all Taylor polynomials of order 3 or more based at any point are just f(x) = x3 itself!

5. Derivatives of sin(x) are cos(x), − sin(x), − cos(x), sin(x) and so on. Evaluating sin(x) itself and these deriva-
tives at x = 0 yields 0, 1, 0,−1, 0, etc. The same data is needed for cosine. We have that the fifth order

Maclaurin polynomial for sin(x) is P (x) = x − x3

3!
+
x5

5!
. Likewise, the fifth order Maclaurin polynomial for

cos(x) is P (x) = 1− x2

2
+
x4

4!
.

Recall from problem #1, the derivatives of ex are just itself and so at x = 0 we just get e0 = 1. Thus the fifth

order Maclaurin polynomial of ex is P (x) = 1 + x+
x2

2
+
x3

3!
+
x4

4!
+
x5

5!
.

It should be easy to guess what higher order Maclaurin polynomials for sine, cosine, and ex are.

6. Any Taylor polynomial of order 4 or more based at any point is just going to be f(x) = x4 + 3x2− x+ 1 itself.

7. In a Taylor polynomial of f(x) based at x = −1, the coefficient of (x+ 1)k is
f (k)(−1)

k!
. So if the coefficient of

(x+ 1)k is c, we have f (k)(−1) = c · k!. Thus f(−1) = 5, f ′(−1) = −4, f ′′(−1) = 0 · 2 = 0 (there is no (x+ 1)2

term), f ′′′(−1) = 2 · 3! = 12, and f (4)(−1) = −1 · 4! = −24.

8. First, note that P ′(x) = 3x2, P ′′(x) = 6x, P ′′′(x) = 6, and P (4)(x) = 0. Since a function and its fourth order
Taylor polynomial based at x = 2 must have matching data at x = 2 (up to the fourth derivative), we get that
f(2) = P (2) = 23 = 8, f ′(2) = P ′(2) = 3 · 22 = 12, f ′′(2) = P ′′(2) = 6 · 2 = 12, f ′′′(2) = P ′′′(2) = 6, and
f (4)(2) = P (4)(2) = 0.

This is as much as we can say. While P (5)(2) = 0, there is no guarantee that f (5)(2) matches this value. In the
end, f (5)(2) is completely unknowable from the data given. Likewise, this Taylor polynomial does not tell us
about data at other inputs, so f ′(3) is also unknowable from our given information.

9. Notice that when f(x) is a polynomial of order n, f (k)(x) = 0 for k > n. Thus the Taylor remainder formula
is zero for polynomials of order n or more.

10. Using work from problem #5 to get the fourth order Maclaurin polynomial for cosine, we have cos(0.1) ≈

1− 0.12

2
+

0.14

4!
= 0.9550041666. Since the fifth derivative of cosine is − sin(x) and | − sin(x)| ≤ 1, the Taylor

remainder formula caps the error at
1

5!
(0.1)5 = 0.00000008333. Note: cos(0.1) = 0.995004165278 · · · .


