
Math 1110 Some Theorems & Definitions Supplement

Theorem: (Intermediate Value Theorem) Let f(x) be continuous on the closed interval [a, b]. If y0 is any
real number between f(a) and f(b), then there exists some a ≤ x0 ≤ b such that f(x0) = y0. In other words, if
f(x) is continuous and hits two outputs, then it must hit all of the outputs in between as well.

Corollary: Let f(x) be continuous on the closed interval [a, b]. If f(a) and f(b) have different signs (i.e. f(a) < 0
and f(b) > 0 or f(a) > 0 and f(b) < 0), then there exists some real number c such that a < c < b and f(c) = 0. In
other words, if f(x) is continuous, it cannot switch from being positive to negative without hitting 0 (i.e. the x-axis)
at some point.

Definition: If f(x1) < f(x2) for all a < x1 < x2 < b, then f(x) is strictly increasing on the open interval (a, b).
If f(x1) ≤ f(x2) for all a < x1 < x2 < b, then f(x) is increasing on (a, b). Likewise, if f(x1) > f(x2) for all
a < x1 < x2 < b, then f(x) is strictly decreasing on (a, b). If f(x1) ≥ f(x2) for all a < x1 < x2 < b, then f(x) is
decreasing on (a, b).

Definition: If f ′(a) = 0 or f ′(a) does not exist, then x = a (or more precisely the point (x, y) = (a, f(a)) ) is
called a critical point.

Theorem: (Mean Value Theorem) Let f(x) be continuous on the closed interval [a, b] and differentiable (i.e.
its derivative exists) on the open interval (a, b). Then there exists some c such that a < c < b and

f(b) − f(a)

b− a
= f ′(c)

In other words, the derivative must take on the average rate of change at some point.

Corollary: Let f(x) be continuous on [a, b] and differentiable on (a, b). If f ′(x) > 0 when a < x < b, then f(x) is
strictly increasing on the open interval (a, b). If f ′(x) ≥ 0 when a < x < b, then f(x) is increasing on (a, b). Likewise,
if f ′(x) < 0 when a < x < b, then f(x) is strictly decreasing on (a, b). If f ′(x) ≤ 0 when a < x < b, then f(x) is
decreasing on (a, b).

Note: If f(x) has a continuous derivative, then f ′(a) > 0 guarantees that f ′(x) > 0 for x’s “near” a, this means
that there is some ε > 0 such that f ′(x) > 0 for all a− ε < x < a+ ε. Thus by the above corollary, f(x) is increasing
on (a − ε, a + ε). In the presence of a continuous derivative, having a positive derivative at x = a is enough to
guarantee that f(x) is increasing on an interval centered about x = a. A similar statement holds for f ′(a) < 0. That
said – if f(x) has a discontinuous derivative, it is possible to have a positive derivative at x = a, yet f(x) “jiggles”
up and down arbitrarily close to x = a (so it does not increase on any interval surrounding x = a).

Theorem: If f(x) is increasing (or strictly increasing) on [a, b] and differentiable on (a, b), then f ′(x) ≥ 0. Likewise,
if f(x) is decreasing, then f ′(x) ≤ 0.

Note: Generally, if f(x) is strictly increasing, we will have f ′(x) > 0. But not always. For example, f(x) = x3 is
strictly increasing everywhere, but f ′(x) = 3x2 = 0 when x = 0. If f ′(a) = 0, then f(x) has a horizontal tangent at
x = a (i.e. f(x) has temporarily “leveled off” at x = a).

Definition: f(x) is concave up on (a, b) if given any a < x1 < x2 < b, then f(x) lies below the secant line through
(x1, f(x1)) and (x2, f(x2)). This is equivalent to saying f(x) − f(x1)

x− x1
≤ f(x2) − f(x1)

x2 − x1
for all x1 < x < x2. If f(x) lies above its secant lines (so flip the “≤” to “≥” above), then it is concave down.

Theorem: Suppose f(x) is differentiable. Then f(x) is concave up anywhere the graph of f(x) lies above its tangent
lines and f(x) is concave down anywhere the graph of f(x) lies below its tangent lines.

Theorem: If f ′′(x) > 0 for all a < x < b, then f(x) is concave up on the open interval (a, b). Likewise, if f ′′(x) < 0
for all a < x < b, then f(x) is concave down on (a, b).

Note: The same discussion holds for concavity as it did for increasing vs. decreasing. If f(x) has a continuous
second derivative, then f ′′(a) > 0 means f(x) is concave up near x = a and if f ′′(a) < 0, then f(x) is concave down
near x = a. But if f ′′(x) is discontinuous, weird things can happen.

Theorem: Assume f ′′(x) exists on an open interval (a, b). If f(x) is concave up on (a, b), then f ′′(x) ≥ 0 for all
a < x < b. Likewise, if f(x) is concave down on (a, b), then f ′′(x) ≤ 0 for all a < x < b.



Note: Again, generally concave up will mean f ′′(x) > 0 and concave down will mean f ′′(x) < 0, but we can have
f ′′(x) = 0 at points in regions where f(x) is concave down or up. If f ′′(a) = 0, f(x) should look linear near x = a
(i.e. f(x) should look “flat” near x = a).

In summary, roughly, f ′(x) > 0 means f(x) is increasing, f ′(x) < 0 means f(x) is decreasing, f ′(x) = 0 means
f(x) has leveled off. f ′′(x) > 0 means f(x) is concave up, f ′′(x) < 0 means f(x) is concave down, and f ′′(x) = 0
means f(x) is flat.

Definition: If f(x) switches from concave up to concave down at x = a or vice-versa, then x = a (or more precisely
(x, y) = (a, f(a)) ) is an inflection point of f(x).

Definition: If f(a) ≥ f(x) for all x’s in the domain of f(x), then x = a (or more precisely (x, y) = (a, f(a)) ) is a
global maximum of f(x). In this case, we call f(a) the maximum value of f(x) [think: value=output]. Likewise,
if f(a) ≤ f(x) for all x’s, then x = a is a global minimum of f(x) and f(a) is f(x)’s minimum value.

Definition: If there exists some ε > 0 such that f(a) ≥ f(x) for all a − ε < x < a + ε, then x = a (or more
precisely (x, y) = (a, f(a)) ) is a local or relative maximum of f(x). Likewise, if there exists some ε > 0 such
that f(a) ≤ f(x) for all a − ε < x < a + ε, then x = a (or more precisely (x, y) = (a, f(a)) ) is a local or relative
minimum of f(x). Roughly, x = a is a local max if f(x) ≤ f(a) for all x’s close to a, and x = a is a local min if
f(x) ≥ f(a) for all x’s close to a.

Note: We use the term extreme to mean either a maximum or minimum. For example, the set of local extrema
is the set of all local minimums and local maximums. A function’s extreme values are its maximum and minimum
values. By the way, a function can have many local minima and maxma. In fact, a function can have many global
minima and maxima. For example, f(x) = sin(x) hits its maximum value of 1 and minimum value of −1 infinitely
many times! On the other hand, a function can have at most one maximum value and at most one minimum value.

Warning: Endpoints are weird. Some textbooks call endpoints critical points and consider them local extrema,
other books do not. For this class, I will leave their status ambiguous. However, if endpoints are allowed to be
extrema, then they also need to be allowed as critical points.

Theorem: If x = a is a local extreme of f(x), then x = a is a critical point (or an endpoint) of f(x).

Note: The converse of this theorem is not true. For example, x = 0 is a critical point for f(x) = x3 (since
f ′(x) = 3x2 and so f ′(0) = 0). However, x = 0 is neither a local min nor a local max of f(x) = x3. So keep in mind
that some of our critical points are likely to be min’s or max’s, but some of them may be neither. On the other
hand, any min or max must be a critical point.

Theorem: If x = a is an inflection point and f ′′(x) is continuous near a, then f ′′(a) = 0.

Note: Again, the converse is certainly not true. For example, f(x) = x4 is concave up everywhere (so f(x) has
no inflection points), but f ′′(x) = 12x2 is 0 at x = 0. As before, if f ′′(a) = 0, then x = a might be an inflection point
but it does not have to be one. On the other hand, if x = a is an inflection point and f ′′(x) exists near x = a, then
f ′′(a) must be 0.

Theorem: (Extreme Value Theorem) Let f(x) be continuous on the closed interval [a, b]. Then f(x) attains
a maximum and minimum value on [a, b]. In particular, there exists some a ≤ m ≤ b and some a ≤ M ≤ b such
that f(m) ≤ f(x) ≤ f(M) for all a ≤ x ≤ b (i.e. f(m) is the minimum value and f(M) is the maximum value of
f(x) on [a, b]).

Note: If f(x) is not continuous or if we are not working on a closed interval, then there is no guarantee that f(x)
has a global min or max.

Algorithm: If f(x) is continuous and we wish to find the extreme values of f(x) defined on [a, b], then by the
Extreme Value Theorem we know that these extreme values must exist. The global extremes must be found among
the local extremes (or at the endpoints). Thus we find all of the local extrema and then decide which are global
extrema. In particular. . .

• Differentiate f(x).

• Find all of the critical points – that is – solve f ′(x) = 0 for x and determine where f ′(x) does not exist.

• Throw away any critical point falling outside of the relevant interval [a, b] (i.e., if a critical point is smaller than
a or larger than b, it should be discarded).

• Plug each relevant critical point as well as the endpoints (x = a and x = b) into the original function f(x).

• The largest value of f(x) in our list is the maximum value and the smallest is the minimum value.


