#1 Differential Equations

(a) Verify that $y = te^{-3t}$ is a solution of y'' + 6y' + 9y = 0.

(b) Solve the initial value problem: $y' = \frac{x^2 + 1}{x^3} + 2$ and y(1) = 5.

Hint: Do some algebra to simplify your fraction first.

#2 Approximate!

Recall that L_n , R_n , and M_n are the left, right, and midpoint rule approximations of an integral when using a regular (=equally spaced) partition of n subintervals. In addition, $T_n = \frac{1}{2}L_n + \frac{1}{2}R_n$ approximates our integral using n trapezoids. Finally, $S_{2n} = \frac{2}{3}M_n + \frac{1}{3}T_n$ approximates using parabolic arcs.

(a) Consider the definite integral $\int_{-3}^{9} \sqrt[3]{x^2} dx$. Compute L_3 , R_3 , M_3 , T_3 , and S_6 (= $S_{2\cdot 3}$).

(b) Suppose $I = \int_{1}^{5} \ln(x) dx$. Sketch a picture of the approximations R_2 and T_2 for this integral.

(c) Still considering $I = \int_1^5 \ln(x) \, dx$, rank $L_n, \, R_n, \, M_n, \, T_n, \, I$. [For example, $L_n \leq R_n \leq M_n \leq T_n \leq I$ is definitely not the correct answer!]

#3 Exact area.

(a) First, carefully sketch y = 2x + 2 on the interval [-2, 3].

Then, compute $\int_{-2}^{3} (2x+2) dx$ using basic geometry (i.e., interpret the integral as net area).

(b) First, carefully sketch $y = \sqrt{16 - x^2}$ (*Hint:* this is the upper-half of a circle).

Then, compute $\int_{-4}^{4} \sqrt{16-x^2} dx$ using basic geometry.