Use Maple to answer the following questions. Please turn in a print out of your Maple work — including the requested graphs.

Due: Monday, September 27th

$$I = \int_{-\pi}^{\pi} e^{\sin(x)} dx \qquad \text{and} \qquad f(x) = e^{\sin(x)}$$

Warning: Remember that in Maple " e^x " is " $\exp(x)$ " and " π " is "Pi" (captial P lowercase i).

- 1. Plot f(x) where $-\pi \le x \le \pi$.
- 2. Use Maple's "int" and "evalf" commands to find the exact value of I and a decimal approximation.
- 3. Make Maple output plots illustrating the following approximations of *I*:
 - (a) M_{10}
 - (b) T_{10}
 - (c) S_4 Warning: In Maple, "partition=10" corresponds to our text's " S_{20} ".
- 4. Make Maple output the corresponding summations for problem #3's approximations.
- 5. Using the error bound in section 6.2 (page 387, Theorem 3), find n such that $|I R_n| \le 0.01$.
- 6. Using the n you found in the last part, compute R_n and verify that $|I R_n| \le 0.01$.
- 7. Using the error bound given in section 6.2 (page 387, Theorem 3), find n so that $|I T_n| \le 0.01$.
- 8. Using the n you found in the last part, compute T_n and verify that $|I T_n| \leq 0.01$.
- 9. Using the error bound given in the interlude (page 405, Theorem 4), find N so that $|I-S_N| \leq 0.01$.
- 10. Using the N you found in the last part, compute S_N and verify that $|I S_N| \le 0.01$. [Again, be careful! Maple will want its "partition" parameter set to N/2 not N.]