Math 1120 Homework #2

Use Maple to answer the following questions.

Turn in a print out of your Maple work — including the requested graphs.

- 1. Find the 5th order Taylor polynomial centered at $x_0 = 3$ for $f(x) = \frac{\sin(x)}{x}$.
- 2. Plot $P_5(x)$ (found in problem #1) and f(x) together. Pick a range for your x-coordinates and y-coordinates which looks nice. Of course your window should include $x = x_0 = 3$.
- 3. Let's find a good approximation of $g(x) = \cos(x)$ on the interval $[-\pi, \pi]$. Let $P_n(x)$ be the n^{th} order MacLaurin polynomial $(x_0 = 0)$ for g(x). Find the error bound for $|g(x) P_n(x)|$ when $-\pi \le x \le \pi$.
- 4. Find the smallest integer n so that the error bound guarantees $|g(x) P_n(x)| \le 10^{-6}$ for all $-\pi \le x \le \pi$. [Hint: You will need to use numerically solve from a point. You may need to try several guesses to get a reasonable answer negative n's are not reasonable! Also, remember your final n needs to be an integer.]
- 5. Compute your approximation $P_n(2.5)$ (using the *n* you found in problem 4) and its actual error $|\cos(2.5) P_n(2.5)|$ to verify that your approximation really works.
- 6. Let $h(x) = e^{-x} \sin(x)$. Find the 1st, 3rd, and 6th order Fourier polynomials for h(x).
- 7. Plot the 3 Fourier polynomials (found in problem #6) together with h(x). You should restrict your plot domain to $-\pi \le x \le \pi$.

DUE: Tuesday, November 2nd.