MATH 1120 QuIzZ #7 ANSWER KEY

For each of the following series apply a convergence/divergence test to determine whether
the series converges or diverges.

Blanket Statement: In each case, these series have (eventually) positive terms, so all
of our tests are potentially valid to apply (comparison, integral, and ratio).
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This series diverges. The easiest way to see this is: klim In(k) = oo # 0. Since the
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limit of the terms being summed is not zero the series cannot converge.

A second approach would be to use a comparison. Notice that 0 < 1 < In(k) (at least
this is true when k > 3). Then since Y ., 1 diverges (limit of the terms is 1 # 0), the
sum of logs diverges.

Please note that the ratio test does work here. The limit of the ratio of terms is 1
(you’ll need L’Hopitals rule to evaluate the limit), so the ratio test says nothing.
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This series diverges. The numerator is an exponential function and the denominator
k
is a polynomial, so the limit of the terms: lim ——— = 0o # 0 so the series diverges.
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Although the above argument works, it might be easier to use the ratio test (especially
if that limit doesn’t seem obvious to you).
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So the series diverges by the ratio test.
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This series converges. Use the ratio test.
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So the series converges by the ratio test.
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This series converges. Ignoring all of the “lower order” terms, it looks like the p-series
>~ 1/k* which converges since p = 2 > 1. Since we suspect the series converges and it
is comparable to a p-series, we should use the comparison test.
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(The inequality holds since we made the numerator bigger and the denominator smaller.)
Next, we note that % P k% converges (since it’s a multiple of a convergent p-series).
Therefore, our series converges (by the comparison test).

Note: To show that a series converges using the comparison test we must find an
upper bound coming from a convergent series. To show divergence we find a lower
bound coming from a divergent series.



