’MATH 1120 ANSWER KEY TEST #3 — EXTRA CREDIT
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Substitute u = In(z) (so that du = (1/x)dz, 2 — In(2), and b — In(b)).
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Note: 22 —1 = 0 only when o = 1, so this integral is only improper at co. Also, we
need to find the partial fraction decomposition before integrating.
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Then after clearing the denominators, 2 = A(x + 1) + B(x — 1). Plugging in z = —1,
we find that 2 =0+ B(—2) so B = —1. Plugging in z = 1, we get that 2 = A(2) + 0
so A = 1. Therefore,
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In the last step we used the law of logs: In(X) — In(Y) = In(X/Y).
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Note: (b—1)/(b+1) — 1 as b — oo so the first log expression approaches In(1) = 0.
In the last step we used the fact that —11In(X) = In(X ).
(Converges to In(5/3))
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WARNING: 1/2? is improper at z = 0 (as well as x = 00). So we need to split up
this integral to deal with both endpoints separately. Let’s split the integral at x = 1.

That is... fooo = fol +floo.
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Since the fol—part diverges, whole integral diverges. [However, the floo—part does con-

verge. Although this isn’t important to our answer.]
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Note: this integral is improper when x — 2 = 0 (i.e. when x = 2). Since this integral

is improper “in the middle” we need to split it up into 2 pieces. f03 = f02 + f;. Let’s
deal with the f23-part first.
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since In |a — 2| is approaching “In |0] = —oc0” as a — 2. Since the f;’—part diverges, the
whole integral diverges. [If we had checked out the fOZ—part, we would have found it
diverges as well. So, unlike the last problem, in this problem both pieces diverge.]

(Diverges)
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using integration by parts with u = In |z| and dv = z~2dx.
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Use L’Hopital’s rule to evaluate the limit of In |b|/b.
(Converges to 1)
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Note: this integral is improper at = 2 so we need to split it into 2 pieces. Let’s deal
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with the fo -part first.
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Since (b — 2)%3 approaches 0 from the left, we get that 1/(b — 2)%/3 approaches —oc.
Therefore, because the f02-part diverges, the whole integral diverges. [Again, note that

=0

the f24—part diverges as well — we could have used that part to show divergence.]
(Diverges)



Use a comparison test to determine if the following integrals converge or diverge.
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This looks like a p-integral with p = 2 so we should suspect that it conveges. Thus we
need to find an upper bound when comparing. To make a fraction bigger we need to
increase the numerator and decrease the denominator.
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parison test (for integrals) we conclude that our integral converges.
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Now note that fl 1/x? dz converges. Thus by the com-
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Ignoring all of the “lower order terms,” this integral looks like / % dz which is
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essentially an integral like floo 1/ dx which diverges (p-integral with p = 1). So since
we suspect that the integral diverges, we should look for a lower bound.
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v+ 22+ sin(@) + > ’ > T > 0 (first we decreased the nu-
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merator and then increased the denominator). Now we know that floo 1/x dx diverges.
Thus floo 1/(3z) dx diverges too. Therefore, by the comparison test, our integral
diverges.
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(since we decreased the donominator). [Note: e® is an increasing function and z? > x
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Therefore, by the comparison test, our integral converges.
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When 0 < 2 < 1 we have that 1 = e? < e* < e! = e. Therefore, 0 <

(we decreased the denominator using e” > 1). Next, briefly / —dx = / 12 dy
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2V ‘ =2v1-2V0 0 (converges). Therefore, by the comparison test, our integral
conv(érges.



