Math 1120 Logistic Growth Calculus 2

When populations are small relative to their environment and resources, population growth tends to be pro-
portional to the size of the population. In other words, if P(¢) is a population and ¢ is time, we expect to see
P'(t) = k- P(t) for some growth constant k¥ when P(t) is relatively small.

However, when the population starts getting big relative to its environment and resources become scarce (e.g.,
food or land), we expect to see this growth to come to a near stop. Imagine we are situated in a region that can
only reasonably sustain a population of M (i.e., the location’s carrying capacity). Then as P(t) approaches M, we
should see P’(t) =~ 0.

A simple model that incorporates both of these features is logistic growth. Here we have P'(t) = kP (1 — 4)
and let P(0) = P, denote some initial population. Notice that if P is much smaller than M, 1 — % 1-0=1so0
P’szandifPisclosetoM,then1—%’@1—1:050]3’%0.
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We now solve the logistic equation using separation of variables and a partial fraction decomposition. We have

4P = kP(1 — P/M) so that ﬁ = kdt. We then seek to integrate both sides. The right hand side is easy:

[ kdt =kt + C; for some constant Cy. The left hand side requires a partial fraction decomposition.
Wehae;—% L = M —_MP—M—é—i—iforsomeAandB
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Clearing the denominators (i.e., multiplying both sides by P(P — M)), we get —M = A(P — M) + B - P. Now plug
in our roots. At P =0, we get —M = A(—M)+0so A=1and at P= M, weget —M =0+ B-M so B=—1.
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Therefore, we integrate / ( +

2 P]W) dP =1n|P|—In|P — M| (plus some constant). Putting this together

with our other (easy) integral, we get In|P| —1In|P — M| = kt + C;. Next, use a law of logs: In Iz

P
M‘—kt—i—Cl.
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Then exponentiate: ij‘ = M+ = kteCr and drop absolute values: v +eC1ekt. Acknowledge that
we lost a zero solution when dividing during the separation of variables and so £¢“* (plus that zero solution) account
P
for all possible constants, so we rename this as C'. Therefore, M CeFt.

Next, we solve for P. We have P = Ce* (P — M) = PCe* — MCeFt so —MCe** = P — PCeFt = P(1 — Cekt).

—~MCeFt  MCeFt  Cekt M
Thus P = = = . )

1—CeFt  Cekt—1 CeFt 1— CeFt
as P(t) = 0 which was another solution that we lost due to an earlier division).

Therefore, our general solution is P(t) = T O ki (as well
—Ce
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Finally, assuming that P(0) = Py, we have Py = T—Ccd —1-C so that M = Py(1—-C) = Py— Py - C. Thus
“Ce _
Py— M M M Py
Py-C =Py— M and so C = ————. Theref P(t) = = - —. Wi
0 0 and so 2 erefore, P(t) = 7— (Py— M)/Pye—F — 1— (Py— M)/PyeFt By °
M- P,

then arrive at our solution’s final form: | P(t)

T Py — (Py— Me k|

Note that if Py = 0, then P(t) = 0 (no population stays that way). Also, if Py = M, then P(t) = M (if we are
already at our carrying capacity, we stay there). Also, notice that, assuming k > 0 (i.e., we have a growth constant),

M - P
then e % — 0 as t — oo. Thus P(t) — iz 8 = M as t — oco. In other words, we should expect our population to

tend toward our carrying capacity regardless of where it started. So a small population over a long time will grow
to approximately M and a very large population over a long time will shrink to M.



