
Math 1120 Logistic Growth Calculus 2

When populations are small relative to their environment and resources, population growth tends to be pro-
portional to the size of the population. In other words, if P (t) is a population and t is time, we expect to see
P ′(t) ≈ k · P (t) for some growth constant k when P (t) is relatively small.

However, when the population starts getting big relative to its environment and resources become scarce (e.g.,
food or land), we expect to see this growth to come to a near stop. Imagine we are situated in a region that can
only reasonably sustain a population of M (i.e., the location’s carrying capacity). Then as P (t) approaches M , we
should see P ′(t) ≈ 0.

A simple model that incorporates both of these features is logistic growth. Here we have P ′(t) = kP
(
1− P

M

)
and let P (0) = P0 denote some initial population. Notice that if P is much smaller than M , 1− P

M ≈ 1− 0 = 1 so

P ′ ≈ kP and if P is close to M , then 1− P
M ≈ 1− 1 = 0 so P ′ ≈ 0.

We now solve the logistic equation using separation of variables and a partial fraction decomposition. We have
dP
dt = kP (1 − P/M) so that dP

P (1−P/M) = k dt. We then seek to integrate both sides. The right hand side is easy:∫
k dt = kt + C1 for some constant C1. The left hand side requires a partial fraction decomposition.

We have
1

P (1− P/M)
=

M

M
· 1

P (1− P/M)
=

M

P (M − P )
=
−M
P

P −M =
A

P
+

B

P −M
for some A and B.

Clearing the denominators (i.e., multiplying both sides by P (P −M)), we get −M = A(P −M) + B · P . Now plug
in our roots. At P = 0, we get −M = A(−M) + 0 so A = 1 and at P = M , we get −M = 0 + B ·M so B = −1.

Therefore, we integrate

∫ (
1

P
+

−1

P −M

)
dP = ln |P | − ln |P −M | (plus some constant). Putting this together

with our other (easy) integral, we get ln |P | − ln |P −M | = kt + C1. Next, use a law of logs: ln

∣∣∣∣ P

P −M

∣∣∣∣ = kt + C1.

Then exponentiate:

∣∣∣∣ P

P −M

∣∣∣∣ = ekt+C1 = ekteC1 and drop absolute values:
P

P −M
= ±eC1ekt. Acknowledge that

we lost a zero solution when dividing during the separation of variables and so ±eC1 (plus that zero solution) account

for all possible constants, so we rename this as C. Therefore,
P

P −M
= Cekt.

Next, we solve for P . We have P = Cekt(P −M) = PCekt −MCekt so −MCekt = P − PCekt = P (1− Cekt).

Thus P =
−MCekt

1− Cekt
=

MCekt

Cekt − 1
=

Cekt

Cekt
· M

1− Ce−kt
. Therefore, our general solution is P (t) =

M

1− Ce−kt
(as well

as P (t) = 0 which was another solution that we lost due to an earlier division).

Finally, assuming that P (0) = P0, we have P0 =
M

1− Ce0
=

M

1− C
so that M = P0(1− C) = P0 − P0 · C. Thus

P0 · C = P0 −M and so C =
P0 −M

P0
. Therefore, P (t) =

M

1− (P0 −M)/P0e−kt
=

M

1− (P0 −M)/P0e−kt
· P0

P0
. We

then arrive at our solution’s final form: P (t) =
M · P0

P0 − (P0 −M)e−kt
.

Note that if P0 = 0, then P (t) = 0 (no population stays that way). Also, if P0 = M , then P (t) = M (if we are
already at our carrying capacity, we stay there). Also, notice that, assuming k > 0 (i.e., we have a growth constant),

then e−kt → 0 as t→∞. Thus P (t)→ M · P0

P0 − 0
= M as t→∞. In other words, we should expect our population to

tend toward our carrying capacity regardless of where it started. So a small population over a long time will grow
to approximately M and a very large population over a long time will shrink to M .


