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Classical Algebras:

Associative Algebras

and

Lie Algebras
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Algebras (over F):

An Algebra, A, is a vector space (over some field F) equipped

with a multiplication map: m : A × A → A such that m is

bilinear.

Multiplication is usually denoted by juxtaposition:

m(u, v) = uv.

Examples:

Real Matrix Algebras Let A = Rn×n be all n×n matrices with real entries.

Polynomial Algebras Let A = R[x, y] be all polynomials in two indeter-
minants (x and y) with real coefficients.

Cross Product Algebra Let A = R3 here we multiply vectors by taking
their cross product: u× v.
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Special Properties:

Let A be an algebra (over some field F).

Associative A is Associative if u(vw) = (uv)w for all u, v, w ∈ A.

Unital A is Unital or an algebra with identity if there exists some 1 ∈ A
such that 1v = v1 = v for all v ∈ A.

Commutative A is Commutative if uv = vu for all u, v ∈ A.

Examples:

• A = R[x, y] is a commutative associative unital algebra. It’s identity is
the polynomial 1.

• A = Rn×n is an associative unital algebra, but it is not commutative
(unless n = 1). It’s identity is the identity matrix In.

• A = R3 equipped with the cross product is a non-associative non-
commutative algebra and has no identity. So what kind of algebra is
this?

5



Lie Algebras:

Let L be an algebra (over some field F). Instead of us-
ing juxtaposition, let’s denote multiplication with a bracket:
m(u, v) = [u, v]. L is called a Lie Algebra if the following
axioms hold:

Skew-Commutative [v, v] = 0 for all v ∈ L.

Jacobi Identity [[u, v], w] + [[v, w], u] + [[w, u], v] = 0 for all u, v, w ∈ L.

Examples:

• A = R3 equipped with the cross product is a Lie algebra. Remember
that v×v = 0 (the cross product of parallel vectors is zero). A tedious
calculation shows that the Jacobi identity holds as well.

• If we give the matrix algebra Rn×n a different multiplication, called
the commutator bracket, defined by [A,B] = AB − BA, it becomes
a Lie algebra. To remind ourselves that we are using a different
“multiplication” we call this algebra gl(n,R).
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Lie Algebras:

What do the axioms really say?

• The first axiom, [v, v] = 0, implies the following:

0 = [u+v, u+v] = [u, u+v]+[v, u+v] = [u, u]+[u, v]+[v, u]+[v, v] = [u, v]+[v, u]

Therefore, [u, v] = −[v, u] (almost commutative!)

• The Jacobi identity says much more. Using the above property we
can re-write the Jocobi identity as follows:

0 = [[u, v], w] + [[v, w], u] + [[w, u], v]
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Lie Algebras:

What do the axioms really say?

• The first axiom, [v, v] = 0, implies the following:

0 = [u+v, u+v] = [u, u+v]+[v, u+v] = [u, u]+[u, v]+[v, u]+[v, v] = [u, v]+[v, u]

Therefore, [u, v] = −[v, u] (almost commutative!)

• The Jacobi identity says much more. Using the above property we
can re-write the Jocobi identity as follows:

[u, [v, w]] = [[u, v], w]−[v, [w, u]]
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Lie Algebras:

What do the axioms really say?

• The first axiom, [v, v] = 0, implies the following:

0 = [u+v, u+v] = [u, u+v]+[v, u+v] = [u, u]+[u, v]+[v, u]+[v, v] = [u, v]+[v, u]

Therefore, [u, v] = −[v, u] (almost commutative!)

• The Jacobi identity says much more. Using the above property we
can re-write the Jocobi identity as follows:

[u, [v, w]] = [[u, v], w] + [v,−[w, u]]
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Lie Algebras:

What do the axioms really say?

• The first axiom, [v, v] = 0, implies the following:

0 = [u+v, u+v] = [u, u+v]+[v, u+v] = [u, u]+[u, v]+[v, u]+[v, v] = [u, v]+[v, u]

Therefore, [u, v] = −[v, u] (almost commutative!)

• The Jacobi identity says much more. Using the above property we
can re-write the Jocobi identity as follows:

[u, [v, w]] = [[u, v], w] + [v, [u,w]]

d
dt

[f(t)g(t)] = d
dt

[f(t)] g(t) + f(t) d
dt

[g(t)]

Let A be an algebra and ∂ : A → A. If ∂(uv) = ∂(u)v + u∂(v) for all
u, v ∈ A, then we say that ∂ is a derivation of A.

The Jacobi identity simply says,
“The multiplication operators of L are derivations.”
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Non-Classical Algebras:
Vertex (Operator) Algebras
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Origins of Vertex Operator Algebras:

1970s Vertex operators appear in the study of String Theory.

1980s Mathematicians use vertex operators to study certain

representations of affine Lie algebras.

1984 I. Frenkel, J. Lepowsky, and A. Meurman construct V \.

1986 R. Borcherds introduces a set of axioms for a notion

which he calls a “vertex algebra”.

1992 R. Borcherds proves the Conway-Norton conjectures.
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The Definition of a Vertex Algebra
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Algebras (over C):

Let V be a vector space over C.

Vertex Algebras:

Let V be a vector space over C.
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Algebras (over C):

Equip V with a bilinear map · : V × V → V (a multiplication

map).

(u, v) 7→ u · v

Vertex Algebras:

Equip V with infinitely many bilinear maps n : V × V → V

(where n ∈ Z).

(u, v) 7→ unv
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Algebras (over C):

Equip V with a bilinear map · : V × V → V (a multiplication

map).

(u, v) 7→ u · v

Vertex Algebras:

Equip V with a bilinear map Y (·, x) : V × V → V [[x, x−1]]

(V [[x, x−1]] are Laurent series with coefficients in V ).

(u, v) 7→ Y (u, x)v =
∑
n∈Z

unv x
−n−1
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Notation:
V [x] polynomials in x with coefficients in V .

V [x, x−1] Laurent polynomials in x with coefficients in V .

V [[x]] power series in x with coefficients in V .

V ((x)) lower truncated Laurent series with coefficients in V .

V [[x, x−1]] Laurent series in x with coefficients in V .

WARNING: C[[x, x−1]] is not an algebra! Sometimes muti-

plication isn’t well defined.

Example: δ(x) =
∑
n∈Z x

n is the formal delta function. Notice

that (δ(x))2 is undefined.
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Algebras (over C):

Equip V with a bilinear map · : V × V → V (a multiplication

map).

(u, v) 7→ u · v

Vertex Algebras:

Equip V with a bilinear map Y (·, x) : V × V → V ((x))

(V ((x)) are lower truncated Laurent series with coefficients in

V ).

(u, v) 7→ Y (u, x)v =
∑
n∈Z

unv x
−n−1

where unv = 0 for n� 0.
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Algebras (over C):

To be a Lie algebra V ’s multiplication must be skew-symmetric

and satisfy the Jacobi identity.

(uv)w + (vw)u+ (wu)v = 0

Vertex Algebras:

V ’s vertex operators must satisfy the Jacobi identity.

x−1
0 δ

(
x1 − x2

x0

)
Y (u, x1)Y (v, x2)w − x−1

0 δ

(
x2 − x1

−x0

)
Y (v, x2)Y (u, x1)w

= x−1
2 δ

(
x1 − x0

−x2

)
Y (Y (u, x0)v, x2)w
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Algebras (over C):

To be a Lie algebra V ’s multiplication must be skew-symmetric

and satisfy the Jacobi identity.

(uv)w + (vw)u+ (wu)v = 0XXXXXXXXXXXXXXX

u(vw) = (uv)w + v(uw) (the product rule)

Vertex Algebras:

V ’s vertex operators must satisfy the Jacobi identity.

x−1
0 δ

(
x1 − x2

x0

)
Y (u, x1)(Y (v, x2)w) =

x−1
2 δ

(
x1 − x0

−x2

)
Y (Y (u, x0)v, x2)w + x−1

0 δ

(
x2 − x1

−x0

)
Y (v, x2)(Y (u, x1)w)
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Algebras (over C):

To be a unital algebra V must have an identity vector 1.

1u = u1 = u

Vertex Algebras:

A vertex algebra has a vaccuum vector 1.

Y (1, x)u = u and Y (u, x)1 = exDu

In particular, Y (u,0)1 = u. [Note: D(u) = u−21]
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Algebras (over C):

V is a commutative algebra if...

uv = vu

Vertex Algebras:

A vertex operators satisfy a property called locality.

(x1 − x2)NY (u, x1)Y (v, x2) = (x1 − x2)NY (v, x2)Y (u, x1)

for some N � 0
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Algebras (over C):

V is an associative algebra if...

(uv)w = u(vw)

Vertex Algebras:

A vertex operators satisfy a property called weak associativity.

(x1−x2)NY ((Y (u, x1)v), x2)w = (x1+x2)NY (u, x1+x2)(Y (v, x2)w)

for some N � 0
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Summary: vertex algebras generalize both Lie algebras and

commutative associative unital algebras.

...which is interesting since 0 = [1,1] = 1 so that...

u = [u,1] = [u,0] = 0

Classically speaking, these structures don’t go together at all!
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Summary: vertex algebras generalize both Lie algebras and

commutative associative unital algebras.

...which is interesting since 0 = [1,1] = 1 so that...

u = [u,1] = [u,0] = 0
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A “Trivial” Example:

Holomorphic Vertex Algebras

Let A = C[t] be the commutative associative unital algebra of complex

polynomials and let D : A → A be the derivation D =
d

dt
.

Define Y (u, x) = exDu. That is:

Y (f(t), x) = ex
d

dtf(t) = f(t+ x)

So...

f(t)−n−1g(t) = coefficient of xn in...

Y (f(t), x)g(t) = f(t+ x)g(t).

A = C[t] equipped with this vertex operator map, Y (·, x), is a vertex algebra
with vacuum vector 1.
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A “Trivial” Example:

Holomorphic Vertex Algebras

Let A be a commutative associative unital algebra (whose identity is 1)
and let D : A → A be a derivation of A.

Define Y (u, x) = exDu. That is:

Y (u, x)v =
∞∑
n=0

u−n−1vx
n where u−n−1v =

1

n!
Dn(u)v

Then, A equipped with this vertex operator map, Y (·, x), becomes a vertex
algebra with vacuum vector 1.

Note: If D = 0, we simply have Y (u, x)v = uv. That is:
All commutative associative unital algebras are vertex algebras.
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An Example: ŝl2 and the ŝl2-module L(Λ0)
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The 3-dimensional simple Lie algebra sl2:

sl2(C) =
{
A ∈ C2×2 | tr(A) = 0

}

The vector space sl2 becomes a Lie algebra when given the

commutator bracket [A,B] = AB −BA.

Consider the following basis for sl2:

E =

[
0 1
0 0

]
, F =

[
0 0
1 0

]
, and H =

[
1 0
0 −1

]

The commutator brackets among the basis elements are:

[E,F ] = H [H,E] = 2E [H,F ] = −2F

(use skew-symmetry to find the rest).
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Affine sl2:

The infinite dimensional Lie algebra ŝl2 is a central extension

of the loop algebra over sl2.

As a vector space, ŝl2 = sl2[t, t−1]⊕ Cc.

The element c is central: [c, x] = 0 for all x ∈ ŝl2.

Let a, b ∈ sl2 and m,n ∈ Z

[a tm, b tn] = [a, b] tm+n +m tr(ab)δm+n,0c

Let b = sl2[t]⊕ Cc. Notice that b is a subalgebra of ŝl2.
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The ŝl2-module L(Λ0).

Let C1 = C1 be a 1-dimensional b-module with module action
defined as follows:

• c · 1 = 1

• a tn · 1 = 0 for all a ∈ sl2 and n ∈ Z≥0

We define the ŝl2-module V to be

V = U(ŝl2)⊗U(b) C1.

V is an example of a Verma module.

Finally, let L(Λ0) = V/J where J is the maximal proper sub-
module of V (this implies that L(Λ0) is an irreducible module).

Note: We will denote the action of a tn on L(Λ0) by a(n).
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Collect all operators a(n) (where a ∈ sl2 and n ∈ Z) together

in a generating function:

a(x) =
∑
n∈Z

a(n)x−n−1

For each n ∈ Z define the following nth-product:

a(x)nb(x) = Resx1 ((x1 − x)na(x1)b(x)− (−x+ x1)nb(x)a(x1))

Finally define a linear map Y (·, x) as follows:

Y (a(1)(n1)a(2)(n2)...a(r)(nr)1, x) = a(1)(x)n1a
(2)(x)n2...a

(r)(x)nr1

for r ≥ 0, a(i) ∈ ŝl2 and ni ∈ Z.

Notice that for a ∈ sl2 we have:

Y (a, x) = a(x) =
∑
n∈Z

a(n)x−n−1
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Thm: V is a vertex (operator) algebra, J is an ideal of V , and

L(Λ0) = V/J is a simple vertex (operator) algebra.
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Combinatorial Identities
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Define ∆(H,x) = xH(0)exp

 ∞∑
k=1

H(k)

−k
(−x)−k

.

Thm [Li]: (L(Λ0), Y (·, x)) is isomorphic to (L(Λ0), Y (∆(H,x)·, x))

as an L(Λ0)-module.

Notation: Let v ∈ L(Λ0).

Y (∆(H,x)v, x) =
∑
m∈Z

v(H)(m)x−m−1

and

Y (∆(H,x)ω, x) =
∑
m∈Z

L(H)(m)x−m−2
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Def: The character of L(Λ0) is given by:

χ(x; q) = trL(Λ0)x
1
2H(0)qL(0)

Lemma: (
1

2
H

)
(H)

(0) =
1

2
H(0) + 1

L(H)(0) = L(0) +H(0) + 1

= L(0) + 2
(

1

2
H(0)

)
+ 1

Recurrence Thm:

χ(x; q) = (xq)χ(xq2; q)
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Solving the recurrence relations obtained from our Recurrence

Theorem and plugging in an initial condition found by analyz-

ing a “lattice” vertex algebra construction of L(Λ0), we obtain

the following formula for the character of L(Λ0):

Cor:

χ(x; q) =
∞∏
j=1

(1− qj)−1 ∑
n∈Z

qn
2
xn
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The principal character is easily obtained from the “full” char-

acter.

Prop: χP (q) = χ(q−1; q2).

Cor: We have the following multi-sum principal character for-

mula...

χP (q) =
∏
j≥1

(1− q2j)−1 ∑
n∈Z

q2n2−n
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Using the theory of affine Lie algebras Kac obtains the follow-

ing product principal character formula...

χP (q) =
∏
j≥1

(1− q2j)

(1− qj)

Combining this with our principal character formula, we ob-

tain: ∏
j≥1

(1− q2j)

(1− qj)
=

∏
j≥1

(1− q2j)−1 ∑
n∈Z

q2n2−n

Rearranging terms a little bit gives us the following identity

(credited to Gauss):

∏
j≥1

(1− q2j)2

(1− qj)
=

∑
n∈Z

q2n2−n
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