Матн 2110

INDUCTION EXAMPLE:

We will use mathematical induction to prove the following familiar proposition of Euclidean geometry:

Proposition For $n \ge 3$, the sum of the measure of the interior angles of a convex polygon with n vertices is $(n-2)\pi$ radians.

Proof: We will proceed by induction.

- **Base Case** (n = 3): A (convex) polygon with 3 vertices is just a triangle. We know that the sum of the measures of the angles in a triangle is $\pi = (3 2)\pi$ radians. Thus our proposition holds for n = 3.
- **Inductive Step:** Fix some $n \ge 3$ and assume the proposition holds for this n. Then consider a convex polygon with n + 1 vertices. We provide a figure below:

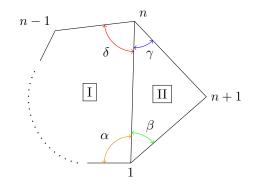


Figure: Our convex polygon with n + 1 vertices.

As done in the above figure, draw a line segment between vertex 1 and vertex n. Since the polygon is convex, this segment will lie *inside* the polygon. We now have two convex polygons made coming from our original convex polygon. Let us label the polygon with vertices 1 through n as I and the polygon with vertices n, n + 1, and 1 as II.

By our inductive hypothesis the sum of the measures of the angles of polygon [I] is $(n-2)\pi$ radians. On the other hand, polygon $[\Pi]$ is a triangle, so its angles sum to π radians.

Notice that the measure of the angle at vertex n in our original (n + 1) vertex polygon is the sum of the angles at vertex n in polygon \boxed{I} and polygon \boxed{II} (i.e., the angle at n is $\delta + \gamma$). Likewise, the measure of the angle at vertex 1 in our original polygon is the sum of the angles of polygons \boxed{I} and \boxed{II} at vertex 1 (i.e., the angle at 1 is $\alpha + \beta$).

The measures of the angles in our original polygon at vertices 2 through n-1 are the same as those in polygon \boxed{I} . Likewise, the measure of the angle at vertex n+1 is the same in our original polygon as it is the the triangle \boxed{II} .

Thus the sum of the measures of the angles at the vertices of our original polygon is equal to the sum of the angles of polygons \boxed{I} plus the sum of the angles of our triangle \boxed{II} . Therefore, the sum of the measures of the angles of our original polygon is $(n-2)\pi + \pi = (n-1)\pi = ((n+1)-2)\pi$ radians.

We have just shown that if the proposition holds for convex polygons with n vertices, then it must also hold for convex polygons with n + 1 vertices.

Therefore, by induction our proposition holds for all $n \geq 3$.