Homework #1

- 1. Consider the following statement: "Bill is old, but his wife is not." Give appropriate definitions for a and b and translate our statement into a formal proposition in terms of a and b. Define and translate in such a way that your logical statement involves at least one negation.
- 2. Let a be the statement "Tomorrow is Thursday", b be "The sky is blue", and c be "Becky loves chocolate". Write down a plain English version of the proposition using these translations of a, b, and c.
 - (a) Proposition #1: $a \lor \neg b$
 - (b) Proposition #2: $(a \land \neg b) \rightarrow c$
 - (c) Proposition #3: $\neg a \land (b \rightarrow c)$
- 3. For each of the following propositions,
 - I. Write down an abbreviated truth table.
 - II. State whether the proposition is a tautology, contradiction, or contingency.
 - (a) Proposition #1: $a \to (\neg b \to a)$
 - (b) Proposition #2: $(a \land b) \rightarrow (a \leftrightarrow c)$
 - (c) Proposition #3: $\neg(a \lor b) \land (a \to \neg b)$
- 4. The Sheffer stroke¹ or NAND (= not and) operation is denoted $a \uparrow b$ and has the following truth table:

a	b	$a \uparrow b$
Т	Т	F
\mathbf{F}	Т	Т
Т	\mathbf{F}	Т
F	\mathbf{F}	Т

Show that $a \uparrow b$ is logically equivalent to $\neg(a \land b)$.

Note: It turns out that the Sheffer stroke is "sufficient" for expressing all possible propositions. This follows if our typical operations are already sufficient (they are - in fact just negation and disjunction are enough) and we know how to translate our usual operations in terms of Sheffer stokes - which can be done as follows:

$$\neg a \longleftrightarrow (a \uparrow a) \qquad (a \lor b) \longleftrightarrow ((a \uparrow a) \uparrow (b \uparrow b)) \qquad (a \land b) \longleftrightarrow ((a \uparrow b) \uparrow (a \uparrow b))$$

$$(a \to b) \longleftrightarrow (a \uparrow (b \uparrow b)) \qquad (a \leftrightarrow b) \longleftrightarrow ((a \uparrow b) \uparrow ((a \uparrow a) \uparrow (b \uparrow b)))$$

¹See for example: https://en.wikipedia.org/wiki/Sheffer_stroke