Math 2110

Homework #10

Handwritten solutions are fine. $\hfill \odot$

Notational Notes: \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} are natural numbers, integers, rational numbers, and real numbers (respectively).

#1 Direct cardinality.

- (a) Show that |N²| ≤ |S| where S = {A ∈ P(N) | A is finite} by finding an injection (i.e., one-to-one function) from N² to S. Note: You should prove your function is one-to-one.
 Warning: One might think of a function like f(a, b) = {a, b} (this sends an ordered pair to a finite set). But this function is not one-to-one: f(1, 2) = {1, 2} but f(2, 1) = {2, 1} = {1, 2} as well. Suggestion: make sure you send a and b to distinct things think even vs. odd.
- (b) Show $\mathbb{O} = \{2k + 1 \mid k \in \mathbb{Z}\} = \{\dots, -3, -1, 1, 3, 5, \dots\}$ is countably infinite by finding a bijection (i.e., invertible function) between \mathbb{O} and \mathbb{N} . *Note:* You should prove your function is invertible (or one-to-one and onto).
- #2 Calculate some cardinalities. Justify your answers using basic cardinal arithmetic and inequalities.

Note: Your answers should either be a non-negative integer (0 or 7 or etc.), \aleph_0 , $\mathfrak{c} = 2^{\aleph_0}$, or $2^{\mathfrak{c}} = 2^{2^{\aleph_0}}$.

For example, $|\mathbb{Z}^{\mathbb{Z}}| = \mathfrak{c} (= 2^{\aleph_0})$ since $|\mathbb{Z}^{\mathbb{Z}}| = |\mathbb{Z}|^{|\mathbb{Z}|} = \aleph_0^{\aleph_0}$ and $2^{\aleph_0} \leq \aleph_0^{\aleph_0} \leq (2^{\aleph_0})^{\aleph_0} = 2^{\aleph_0^2} = 2^{\aleph_0}$ so that $\aleph_0^{\aleph_0} = 2^{\aleph_0} = \mathfrak{c}$.

- (a) $|10^{\mathcal{P}(\mathbb{Z})}|$
- (b) $|\mathbb{Z} \times \mathbb{R}^3| + |\mathbb{Q}^{\mathbb{N}}|$
- (c) Consider \mathbb{N}^5 vs. $5^{\mathbb{N}}$. Do these sets have the same cardinality? Are they countable? (both, either, neither?)

#3 Define the relation $R = \{(a, b) \in \mathbb{Z} \mid \max\{a, b\} = a\}.$

For example: We have 3R2 since $\max\{3,2\} = 3$. On the other hand, 7R11 since $\max\{7,11\} = 11 \neq 7$.

- (a) Consider the properties: reflexive, symmetric, anti-symmetric, and transitive. If a property holds, prove it. If it fails, give a counter-example.
- (b) Is R a partial order? A total order? An equivalence relation? Explain why or why not for each.
- $\#4\,$ A Modular Arithmetic Problem.
 - (a) Denote the equivalence class of an integer k with respect to the equivalence relation "mod n" by [k].
 First, list all of the equivalence classes of integers with respect to the equivalence relation "mod 2" (show their contents don't just write "[0]" etc.).
 Next, do the same for "mod 6".

Finally, prove that $f : \mathbb{Z}_2 \to \mathbb{Z}_6$ where f([x]) = [3x] is a well-defined function.

(b) Let n be a positive integer. Prove that multiplication mod n is well defined. In particular, for any $a, b, c, d \in \mathbb{Z}$ where $a \equiv c \pmod{n}$ and $b \equiv d \pmod{n}$ show that $ab \equiv cd \pmod{n}$.