Homework #5

Handwritten solutions are fine. $\hfill \odot$

#1 In class we showed 2 + 2 = 4 and $3 \cdot 2 = 6$ more-or-less using Axioms 11–14 on our E and PA handout.

- (a) Show 4 + 3 = 7.
- (b) Show $5 \cdot 3 = 15$.

Use the same formatting and level of detail as my "proofs" shown below. You may "bury the details" of addition when working through the multiplication problem.

	4	Showing $3 \cdot 2 = 6$:	
Snowing $2 + 2 =$	4:	1: $3 \cdot (1')$	Definition of $2 = 1'$
1: $2 + (1')$	Definition of $2 = 1'$	2: $(3 \cdot 1) + 3$	Axiom 14
2: $(2+1)'$	Axiom 12	3: $(3 \cdot 0') + 3$	Definition of $1 = 0'$
3: $(2+0')'$	Definition of $1 = 0'$	4: $(3 \cdot 0 + 3) + 3$	Axiom 14
4: $((2+0)')'$	Axiom 12	5: $(0+3)+3$	Axiom 13
5: $((2)')'$	Axiom 11	6: (3) + 3	Addition
6: 4	Definition of $4 = 2''$	7: 6	Addition

#2 Formalize and justify. I'll start off with an example:

Proposition: If $a \leq b$ and $c \leq d$, then $ac \leq bd$.

Formal Statement: $\forall a \forall b \forall c \forall d ((\exists k (b = a + k) \land \exists \ell (d = c + \ell)) \rightarrow \exists m (cd = bd + m))$

Fairly-Formal Proof:

1: $a \leq b$	Given
2: $c \leq d$	Given
3: There exists k such that $b = a + k$	Definition of inequality using 1
4: There exists ℓ such that $d = c + \ell$	Definition of inequality using 2
5: $bd = (a+k)(c+\ell)$	Equal values give equal answers
6: $(a+k)(c+\ell) = a(c+\ell) + k(c+\ell)$	Distributive law
7: $a(c+\ell) + k(c+\ell) = ac + a\ell + kc + k\ell$	Distributive laws
8: $bd = ac + (a\ell + kc + k\ell)$	Transitivity of equality (and associativity) using $5-7$
9: $ac \leq bd$	Definition of inequality using 8

Now fill in the formal statement and give justifications for the steps in my "Fairly-Formal" proof. I won't be too picky about your justifications. Use proper names where we have them.

Proposition: If $a \mid b$ and $a \mid c$, then $a \mid (b+c)$.

Formal Statement: ???

Fairly-Formal Proof:

1: $a \mid b$	5: $b + c = ak + a\ell$
$2 \cdot a = c$	6: $ak + a\ell = a(k + \ell)$
2. a c	7: $b + c = a(k + \ell)$
3: There exists k such that $b = a \cdot k$	8: $a \left(h + c \right)$
4: There exists ℓ such that $c = a \cdot \ell$	$0. \ u \mid (0 + c)$

- #3 Prove that an odd number times an odd number is an odd number.
- #4 Prove that $a \leq b$ implies that $a + x \leq b + x$.
- #5 Prove that $a \mid b$ and $b \mid c$ implies that $a \mid c$.
- #6 Use mathematical induction to prove that the sum of the first n odd numbers is n^2 .

In particular, show that $\sum_{i=1}^{n} (2i-1) = n^2$.

#7 When $n \ge ???$, we have $n^2 < n!$ where $n! = n(n-1)\cdots 3\cdot 2\cdot 1$ (i.e., the factorial function). Find the smallest value for ??? that makes this true. Then prove this inequality using mathematical induction.

Hint: When n is positive, $1 \le n \le n^2$.