Homework #9

Handwritten solutions are fine. \bigcirc

Notational Notes: \mathbb{Z} , \mathbb{Q} , \mathbb{R} are integers, rational numbers, and real numbers (respectively). Also, $\mathbb{R}_{\geq 0} = [0, \infty)$ (i.e., non-negative reals).

- #1 The following are faulty "definitions" of functions. Explain why each fails to be a function.
 - (a) Let $f: \mathbb{Q} \to \mathbb{Z}$ be defined by f(a/b) = ab where $a, b \in \mathbb{Z}$ and $b \neq 0$ (i.e., a/b is a rational number).
 - (b) Let $g: \mathbb{Z} \to \mathbb{R}$ be defined by $g(n) = \sqrt{n}$.
- #2 For each of the following functions, determine if the function is one-to-one, onto, both, or neither. Prove your answers.

#3 Let $f: A \to B$ and $g: B \to C$ be surjective (i.e., onto) functions. Show that $g \circ f: A \to C$ is surjective.

#4 Let $f: A \to B$ be a function and let $S_1, S_2 \subseteq A$ and $T_1, T_2 \subseteq B$. Prove the following:

- (a) $f(S_1) f(S_2) \subseteq f(S_1 S_2)$
- (b) $f^{-1}(T_1 \cup T_2) = f^{-1}(T_1) \cup f^{-1}(T_2)$
- (c) If $T_1 \subseteq T_2$, then $f^{-1}(T_1) \subseteq f^{-1}(T_2)$.

Keep in mind that for a function $f : A \to B$ where $S \subseteq A$ and $T \subseteq B$, we have the following equivalences (straight from the definitions):

- $x \in f(S)$ if and only if there exists some $y \in S$ such that f(y) = x.
- $x \in f^{-1}(T)$ if and only if $f(x) \in T$.

Here is a sample proof involving images and preimages (aka inverse images) of sets.

Prop: Let $f : A \to B$ be a function.

- If $C \subseteq B$, then $f(f^{-1}(C)) \subseteq C$.
- f is onto if and only if for every $C \subseteq B$ we have $f(f^{-1}(C)) = C$.

Proof: For the first item, suppose $C \subseteq B$ and suppose $x \in f(f^{-1}(C))$. Then by definition, there exists some $y \in f^{-1}(C)$ such that f(y) = x. Again, by definition, $y \in f^{-1}(C)$ means $f(y) \in C$. Therefore, $x = f(y) \in C$. Thus $f(f^{-1}(C)) \subseteq C$.

For the second item, first suppose f is onto and let $C \subseteq B$. We already know that $f(f^{-1}(C)) \subseteq C$. So suppose $x \in C$. Then since f is onto, there exists some $y \in A$ such that f(y) = x. But then by definition $y \in f^{-1}(C)$ since $f(y) = x \in C$. Therefore, $f(y) \in f(f^{-1}(C))$ since $y \in f^{-1}(C)$ and so $x = f(y) \in f(f^{-1}(C))$. Thus we have shown $C \subseteq f(f^{-1}(C))$ and so $f(f^{-1}(C)) = C$.

Conversely, suppose that $f(f^{-1}(C) = C$ for all $C \subseteq B$. Let $y \in B$. Then since $\{y\} \subseteq B$, we have $f(f^{-1}(\{y\})) = \{y\}$. Thus, since $y \in \{y\} = f(f^{-1}(\{y\}))$, by definition there exists some $x \in f^{-1}(\{y\})$ such that f(x) = y. Again, by definition $f(x) \in \{y\}$ since $x \in f^{-1}(\{y\})$. So f(x) = y. Therefore, f is onto.