
Math 2110 Contradiction Example: ∞ Many Primes

Proposition There are infinitely many primes.

Proof: We will use proof by contradiction: Suppose there are only finitely many primes. In particular,
assume there are precisely N primes and let p1, p2, . . . , pN be our complete list of prime numbers.

Next, we consider the number q = p1p2 · · · pN + 1. Notice that for all 1 ≤ j ≤ N , pj > 1 (since it’s
a prime). Also, for any particular 1 ≤ ` ≤ N , we then have that p1p2 · · · pN is a positive multiple of p`,
so q = p1p2 · · · pN + 1 ≥ p` + 1 > p`. Therefore, q is bigger than any number on our list p1, . . . , pN (and
consequently it is bigger than 1 as well).

Suppose that q = ab for some natural numbers a and b. In addition, suppose that a 6= 1. Since q > 1,
we have that both a 6= 0 and b 6= 0 (otherwise, we’d have that q = ab = 0 < 1). Thus a > 1 (since a 6= 0, 1).
We have previously shown that any natural number bigger than 1 is a product of primes. Thus a must be
divisible by at least one prime factor, say p is such a prime factor. Well, since p is prime, we must have that
p = pk for some 1 ≤ k ≤ N (since p1, . . . , pN is a complete list of primes). Then p divides a and a divides q
so that p must divide q. But p = pk is a factor of p1p2 · · · pN , so p divides p1p2 · · · pN = q − 1.

We now know that p both divides q and q − 1. Therefore, there exist n and m such that q = pn and
q − 1 = pm. This implies that pn − 1 = q − 1 = pm so that p(n −m) = pn − pm = 1. However, notice
that since 1 is positive, we cannot have n − m ≤ 0 (since p > 1 this would give us 1 = p(n − m) ≤ 0).
Thus n −m > 0. But then n −m ≥ 1 so that 1 = p(n −m) ≥ p · 1 = p > 1. Thus 1 > 1. This is absurd
(contradiction)!

Therefore, we cannot have that a 6= 1 (the last uncontradicted hypothesis we made). Thus if q factors,
then one of those factors must be a = 1. This means that q is prime. But we already have that q is bigger
than any prime on our list: p1, . . . , pN . Therefore, our list is incomplete (contradiction). Thus no list of
primes can be complete. This means we must have infinitely many primes. �

Notice how our proof meanders around as we consider various possibilities. But as we consider these
possibilities, we keep running into roadblocks. This is the nature of proof by contradiction: We try every
possible road until we find that no road leads anywhere.

Warning: This proof does not say that given a list of primes p1, . . . , pN , that q = p1 · · · pN + 1 is also a
prime. We could only get that q was prime using the (untrue) assumption that p1, . . . , pN was a complete
list of primes. On the other hand, a careful reading of our proof reveals that if q = p1 · · · pN + 1 isn’t prime,
then its prime factors must not appear on our list. In other words, the factorization of q = p1 · · · pN + 1 does
not involve any prime in the list p1, p2, . . . , pN .

It is interesting to note that this process of multiplying known primes together and adding one does
generate some primes. For example: the empty product is defined to be 1, so the empty product (from an
empty list of primes) plus 1 is 2 (prime). Now 2 + 1 = 3 (prime). Next, 2 · 3 + 1 = 7 (prime). So far 2, 3,
and 7 are all prime. Notice that we’ve already missed a prime (i.e., 5). Keep on going 2 · 3 · 7 + 1 = 43 (still
prime). But then this stops working: 2 · 3 · 7 · 43 + 1 = 1807 which is not a prime since 1807 = 13 · 39. As
we noted from a careful reading of our proof, the factors of 1807 aren’t on our list: 2, 3, 7, 43.

If we try making our list by using all previous primes, this still doesn’t work. Again, empty product+1 =
2, 2 + 1 = 3, and 2 · 3 + 1 = 7 (all prime so far). Then 2 · 3 · 5 + 1 = 31 (prime), 2 · 3 · 5 · 7 + 1 = 211 (prime),
and 2 · 3 · 5 · 7 · 11 + 1 = 2311 (prime). But 2 · 3 · 5 · 7 · 11 · 13 + 1 = 30, 031 is not prime since 30, 031 = 59 · 509.
Again, notice that 59 and 509 were not (yet) part of our list.


