PROOF SYSTEMS L AND K SUMMARY SHEETS

Axioms:

- Axiom 1: $A \to (B \to A)$
- Axiom 2: $(A \to (B \to C)) \to ((A \to B) \to (A \to C))$

Axiom 3: $(\neg B \rightarrow \neg A) \rightarrow ((\neg B \rightarrow A) \rightarrow B)$

Axiom 4: $(\forall x A(x)) \rightarrow A(t)$, provided that t is free for x in A(x).

Axiom 5: $\forall x(A \rightarrow B) \rightarrow (A \rightarrow \forall xB)$, provided that x does not occur free in A.

Rules of Inference:

Modus Ponens (MP): From A and $A \rightarrow B$ deduce B.

Generalization (GEN): From A, deduce $\forall xA$.

Abbreviations:

Existential Quantifier: $\exists xA$ abbreviates $\neg \forall x \neg A$

Conjunction: $A \wedge B$ abbreviates $\neg (A \rightarrow \neg B)$

Disjunction: $A \lor B$ abbreviates $(\neg A) \to B$

Double Implication: $A \leftrightarrow B$ abbreviates $\neg((A \rightarrow B) \rightarrow \neg(B \rightarrow A))$ Note: When $A \leftrightarrow B$ and $(A \rightarrow B) \land (B \rightarrow A)$ are unabbreviated, they are identical.

Theorems in L:

L1: $\vdash_L A \to A$	L14: $\vdash_L A \to ((A \to B) \to B)$
L2: $\vdash_L (\neg B \to B) \to B$	L15: $\vdash_L \neg A \rightarrow (A \rightarrow B)$
L3: $A \to (B \to C), \ A \to B \vdash_L A \to C$	L16: $\vdash_L (A \to B) \to (\neg B \to \neg A)$
L4: $A \to ((B \to A) \to C) \vdash_L A \to C$	L17: $\vdash_L A \to (\neg B \to \neg (A \to B))$
L5: $B \vdash_L A \to B$	L18: $A, B \vdash_L A \land B$
L6: $A \to (B \to C), B \vdash_L A \to C$	L19: $A \land B \vdash_L A$
L7: $A \to (B \to C) \vdash_L B \to (A \to C)$	L20: $A \land B \vdash_L B$
L8: $A \to B, B \to C \vdash_L A \to C$	L21: $A \vdash_L A \lor B$
L9: $P \to R \vdash_L P \to (Q \to R)$	_
L10: $\vdash_L (\neg B \to \neg A) \to (A \to B)$	L22: $B \vdash_L A \lor B$
L11: $\vdash_L \neg \neg B \rightarrow B$	L23: $A \leftrightarrow B \vdash_L A \to B$
L12: $\vdash_L B \rightarrow \neg \neg B$	L24: $A \leftrightarrow B \vdash_L B \to A$
L13: $\vdash_L (A \to (B \to C)) \to (B \to (A \to C))$	L25: $A \to B, B \to A \vdash_L A \leftrightarrow B$

Shortcuts:

Lemmas: You may write an instance of a previously proved (lowed numbered) theorem as a line, if the instances of the "givens" of that theorem appear as earlier lines.

Rule T: Any instance of a tautology may be inserted as a line in a predicate calculus proof.

Deduction Theorem: If there is a proof of $A \vdash B$ with no applications of generalization to any variables that occur free in A, then there is a proof of $\vdash A \rightarrow B$.

Add $\exists x$ Rule: If A(t) is the result of replacing every free occurrence of x in A(x) with t, and t is free for x in A(x), then from A(t) we may deduce $\exists x A(x)$.

Rule C: If $\exists x A(x)$ is a previous line in a proof, we may write $A(\underline{c})$ as a line, provided that the following two conditions hold.

- 1. \underline{c} is a new constant symbol.
- 2. If some variable (say y) appears free in the formula $\exists x A(x)$, then GEN is never applied to y in the proof.

Theorems in K:

K1
K2
K2
$\mathbf{K2}$
K2
K3
$\mathbf{K3}$

K19:
$$\neg \forall x A(x) \vdash \exists x \neg A(x)$$

K20: $\exists x(A(x) \land B(x)) \vdash \exists x A(x)$
K21: $\vdash \exists x A(x) \rightarrow \exists x(A(x) \lor B(x))$
K22: $\vdash \exists x \forall y A(x, y) \rightarrow \forall y \exists x A(x, y)$
K23: $\vdash \exists x(A(x) \rightarrow B(x)) \rightarrow (\forall x A(x) \rightarrow \exists x B(x))$
K24: $\vdash \exists x B(x) \rightarrow \exists x(A(x) \rightarrow B(x))$
K25: $\vdash \neg \forall x A(x) \rightarrow \exists x B(x)) \rightarrow \exists x(A(x) \rightarrow B(x))$
K26: $\vdash (\forall x A(x) \rightarrow \exists x B(x)) \rightarrow \exists x(A(x) \rightarrow B(x))$
K27: $\vdash \forall x A(x, x) \rightarrow \forall x \exists y A(x, y)$
K28: $\vdash \forall y \exists x(\neg A(y, x) \lor A(y, y))$
K29: $\vdash \exists x(A(x) \lor B(x)) \rightarrow (\exists x A(x) \lor \exists x B(x))$
K30: $\vdash (\exists x A(x) \lor \exists x B(x)) \rightarrow \exists x(A(x) \lor B(x))$
K31: $\vdash \exists x(A(x) \land B(x)) \rightarrow (\exists x A(x) \land B(x))$
K32: $\vdash (\forall x A(x) \land \exists x B(x)) \rightarrow \exists x(A(x) \land B(x))$
K33: $\vdash (\forall x A(x) \lor \forall x B(x)) \rightarrow \forall x(A(x) \land B(x))$
K34: $\vdash \forall x(A(x) \land \forall x B(x)) \rightarrow \forall x(A(x) \land B(x))$
K35: $\vdash (\forall x A(x) \land \forall x B(x)) \rightarrow \forall x(A(x) \land B(x))$