Affine Lie Algebras, Vertex Operator Algebras, and Multisum Identities *Technical Slides*

> William J. Cook Rutgers University Department of Mathematics New Brunswick, NJ

wjcook@math.rutgers.edu

joint work with Kailash Misra and Haisheng Li

Outline

- highest-weight integrable modules for affine Lie algebras and their VOA-module structure
- VOA-module isomorphisms and recurrence relations
- a character formula for $L(\Lambda_0)$
- principal characters and multisum identities

• Let \mathfrak{g} be a simple Lie algebra (over \mathbb{C}) of rank ℓ .

- Let \mathfrak{g} be a simple Lie algebra (over \mathbb{C}) of rank ℓ .
- Let $C = (a_{ij})_{1 \le i,j \le \ell}$ be the Cartan matrix of \mathfrak{g} .

- Let \mathfrak{g} be a simple Lie algebra (over \mathbb{C}) of rank ℓ .
- Let $C = (a_{ij})_{1 \le i,j \le \ell}$ be the Cartan matrix of \mathfrak{g} .
- Fix a set of simple roots. Define the root lattice to be the Z-span of these roots:

$$Q = \mathbb{Z}\alpha_1 + \mathbb{Z}\alpha_2 + \ldots + \mathbb{Z}\alpha_\ell.$$

- Let \mathfrak{g} be a simple Lie algebra (over \mathbb{C}) of rank ℓ .
- Let $C = (a_{ij})_{1 \le i,j \le \ell}$ be the Cartan matrix of \mathfrak{g} .
- Fix a set of simple roots. Define the root lattice to be the Z-span of these roots:

$$Q = \mathbb{Z}\alpha_1 + \mathbb{Z}\alpha_2 + \ldots + \mathbb{Z}\alpha_\ell.$$

 Define the weight lattice to be the Z-span of the fundamental weights:

$$P = \mathbb{Z}\lambda_1 + \mathbb{Z}\lambda_2 + \ldots + \mathbb{Z}\lambda_\ell.$$

• Fix Chevalley generators $\{E_i, F_i, H_i \mid 1 \le i \le \ell\}$.

- Fix Chevalley generators $\{E_i, F_i, H_i \mid 1 \le i \le \ell\}$.
- The H_i (1 ≤ i ≤ ℓ) span a Cartan subalgebra (CSA) denoted by 𝔥. (Note: dim(𝔥) = ℓ.)

- Fix Chevalley generators $\{E_i, F_i, H_i \mid 1 \le i \le \ell\}$.
- The H_i $(1 \le i \le \ell)$ span a Cartan subalgebra (CSA) denoted by \mathfrak{h} . (Note: $\dim(\mathfrak{h}) = \ell$.)
- Let ⟨·, ·⟩ : g × g → C be the normalized nondegenerate symmetric invariant bilinear form.

- Fix Chevalley generators $\{E_i, F_i, H_i \mid 1 \le i \le \ell\}$.
- The H_i (1 ≤ i ≤ ℓ) span a Cartan subalgebra (CSA) denoted by 𝔥. (Note: dim(𝔥) = ℓ.)
- Let ⟨·, ·⟩ : g × g → C be the normalized nondegenerate symmetric invariant bilinear form.
- We have the root space decomposition

$$\mathfrak{g} = \mathfrak{h} \oplus \bigoplus_{\alpha \in \Delta} \mathfrak{g}_{\alpha}$$

where Δ is the set of roots.

By definition, {H₁,..., H_ℓ} and {λ₁,..., λ_ℓ} are dual bases (i.e. λ_i(H_j) = δ_{i,j}).

- By definition, {H₁,..., H_ℓ} and {λ₁,..., λ_ℓ} are dual bases (i.e. λ_i(H_j) = δ_{i,j}).
- Define the fundamental coweights,
 {H⁽¹⁾,...,H^(ℓ)} ⊆ 𝔥, to be the basis dual to
 {α₁,...,α_ℓ}.

- By definition, {H₁,..., H_ℓ} and {λ₁,..., λ_ℓ} are dual bases (i.e. λ_i(H_j) = δ_{i,j}).
- Define the fundamental coweights,
 {H⁽¹⁾,...,H^(ℓ)} ⊆ 𝔥, to be the basis dual to
 {α₁,...,α_ℓ}.
- Define the coroot lattice:

 $Q^{\vee} = \mathbb{Z}H_1 + \mathbb{Z}H_2 + \ldots + \mathbb{Z}H_{\ell}.$

- By definition, {H₁,..., H_ℓ} and {λ₁,..., λ_ℓ} are dual bases (i.e. λ_i(H_j) = δ_{i,j}).
- Define the fundamental coweights,
 {H⁽¹⁾,...,H^(ℓ)} ⊆ 𝔥, to be the basis dual to
 {α₁,...,α_ℓ}.
- Define the coroot lattice:

 $Q^{\vee} = \mathbb{Z}H_1 + \mathbb{Z}H_2 + \dots + \mathbb{Z}H_{\ell}.$

• Define the coweight lattice:

 $P^{\vee} = \mathbb{Z}H^{(1)} + \mathbb{Z}H^{(2)} + \dots + \mathbb{Z}H^{(\ell)}.$

• Let
$$\rho^{\vee} = \sum_{i=1}^{\ell} H^{(i)}$$
.

• Let
$$\rho^{\vee} = \sum_{i=1}^{\ell} H^{(i)}$$
.

• We have that $\langle H_i, H^{(j)} \rangle = \frac{2}{\langle \alpha_i, \alpha_i \rangle}$.

• Let
$$\rho^{\vee} = \sum_{i=1}^{\ell} H^{(i)}$$
.

• We have that $\langle H_i, H^{(j)} \rangle = \frac{2}{\langle \alpha_i, \alpha_i \rangle}$.

• The coroots and coweights are related as follows:

$$H_j = \sum_{i=1}^{\ell} a_{ij} H^{(i)}$$

where $C = (a_{ij})$ is the Cartan matrix of \mathfrak{g} .

The Affinization of g

Define \hat{g} as follows:

$$\hat{\mathfrak{g}} = \mathfrak{g} \otimes \mathbb{C}[t, t^{-1}] \oplus \mathbb{C}c$$

where c is central and

 $[a \otimes t^m, b \otimes t^n] = [a, b] \otimes t^{m+n} + m\langle a, b \rangle \delta_{m+n,0}c$

for every $a, b \in \mathfrak{g}$ and $m, n \in \mathbb{Z}$. Extend the map $d = 1 \otimes t \frac{d}{dt}$ to all of $\hat{\mathfrak{g}}$ by letting d(c) = 0. Let $\tilde{\mathfrak{g}} = \hat{\mathfrak{g}} \rtimes \mathbb{C}d$ be the semi-direct product Lie algebra. $\tilde{\mathfrak{g}}$ is the (untwisted) affine Lie algebra associated with \mathfrak{g} .

Chevalley Generators for $\widetilde{\mathfrak{g}}$

• Let $\theta = \sum_{i=1}^{\ell} a_i \alpha_i$ be the highest (long) root of \mathfrak{g} .

Chevalley Generators for $\tilde{\mathfrak{g}}$

- Let $\theta = \sum_{i=1}^{\ell} a_i \alpha_i$ be the highest (long) root of \mathfrak{g} .
- Let E_{θ} and F_{θ} be elements of the root spaces \mathfrak{g}_{θ} and $\mathfrak{g}_{-\theta}$ respectively such that $\langle E_{\theta}, F_{\theta} \rangle = 1$. Set $H_{\theta} = [E_{\theta}, F_{\theta}].$

Chevalley Generators for $\widetilde{\mathfrak{g}}$

- Let $\theta = \sum_{i=1}^{\ell} a_i \alpha_i$ be the highest (long) root of \mathfrak{g} .
- Let E_{θ} and F_{θ} be elements of the root spaces \mathfrak{g}_{θ} and $\mathfrak{g}_{-\theta}$ respectively such that $\langle E_{\theta}, F_{\theta} \rangle = 1$. Set $H_{\theta} = [E_{\theta}, F_{\theta}].$
- Let $e_i = E_i \otimes 1$, $f_i = F_i \otimes 1$, and $h_i = H_i \otimes 1$ for $1 \le i \le \ell$.
- Let $e_0 = F_{\theta} \otimes t$, $f_0 = E_{\theta} \otimes t^{-1}$, and $h_0 = [e_0, f_0]$.

Chevalley Generators for $\widetilde{\mathfrak{g}}$

• Let $\theta = \sum_{i=1}^{\ell} a_i \alpha_i$ be the highest (long) root of \mathfrak{g} .

- Let E_{θ} and F_{θ} be elements of the root spaces \mathfrak{g}_{θ} and $\mathfrak{g}_{-\theta}$ respectively such that $\langle E_{\theta}, F_{\theta} \rangle = 1$. Set $H_{\theta} = [E_{\theta}, F_{\theta}].$
- Let $e_i = E_i \otimes 1$, $f_i = F_i \otimes 1$, and $h_i = H_i \otimes 1$ for $1 \le i \le \ell$.

• Let $e_0 = F_{\theta} \otimes t$, $f_0 = E_{\theta} \otimes t^{-1}$, and $h_0 = [e_0, f_0]$.

Then, $\{e_i, f_i, h_i \mid 0 \le i \le \ell\}$ are Chevalley generators for $\tilde{\mathfrak{g}}$. Also, $\tilde{\mathfrak{h}} = \mathfrak{h} \oplus \mathbb{C}c \oplus \mathbb{C}d$ is our CSA.

The Homogeneous Gradation

Thus we have the following decomposition of $\hat{\mathfrak{g}}$:

 $\hat{\mathfrak{g}} = \prod_{n \in \mathbb{Z}} \hat{\mathfrak{g}}_{(n)}$ where $\hat{\mathfrak{g}}_{(n)} = \begin{cases} \mathfrak{g} \oplus \mathbb{C}c & n = 0\\ \mathfrak{g} \otimes t^{-n} & n \neq 0 \end{cases}$

We have the following graded subalgebras of $\hat{\mathfrak{g}}$:

$$\hat{\mathfrak{g}}_{(\pm)} = \prod_{n>0} \hat{\mathfrak{g}}_{(\pm n)} = \prod_{n>0} \mathfrak{g} \otimes t^{\mp n}$$

and

$$\hat{\mathfrak{g}}_{(\leq 0)} = \prod_{n \leq 0} \hat{\mathfrak{g}}_{(n)} = \hat{\mathfrak{g}}_{(-)} \oplus \hat{\mathfrak{g}}_{(0)} = \hat{\mathfrak{g}}_{(-)} \oplus \mathfrak{g} \oplus \mathbb{C}c.$$

The Principal Gradation

The second gradation we shall consider is the principal gradation.

The principal gradation is given by the derivation d_P which we define on the Chevalley generators of \hat{g} and extend using the Leibnitz rule. For $0 \le i \le \ell$, let

•
$$d_P(e_i) = e_i$$
,

•
$$d_P(f_i) = -f_i$$
, and

• $d_P(h_i) = 0$.

The Principal Gradation

The second gradation we shall consider is the principal gradation.

The principal gradation is given by the derivation d_P which we define on the Chevalley generators of \hat{g} and extend using the Leibnitz rule. For $0 \le i \le \ell$, let

•
$$d_P(e_i) = e_i$$
,

•
$$d_P(f_i) = -f_i$$
, and

•
$$d_P(h_i) = 0.$$

Lemma: On $\hat{\mathfrak{g}}$,

```
d_P = (\operatorname{ht}(\theta) + 1)d + \operatorname{ad}(\rho^{\vee})
```

where θ is the highest long root of \mathfrak{g} .

From \mathfrak{g} to $\widetilde{\mathfrak{g}}$

Given $\lambda \in \mathfrak{h}^*$ and $k \in \mathbb{C}$, we can define a linear functional $(k, \lambda) \in \tilde{\mathfrak{h}}^*$ by the following:

- For all $h \in \mathfrak{h}$, let $(k, \lambda)(h) = \lambda(h)$.
- On $\mathbb{C}c$, let $(k, \lambda)(c) = k$.
- On $\mathbb{C}d$, let $(k, \lambda)(d) = 0$.

From \mathfrak{g} to $\tilde{\mathfrak{g}}$

Given $\lambda \in \mathfrak{h}^*$ and $k \in \mathbb{C}$, we can define a linear functional $(k, \lambda) \in \tilde{\mathfrak{h}}^*$ by the following:

- For all $h \in \mathfrak{h}$, let $(k, \lambda)(h) = \lambda(h)$.
- On $\mathbb{C}c$, let $(k, \lambda)(c) = k$.
- On $\mathbb{C}d$, let $(k, \lambda)(d) = 0$.

Recall that λ_i $(1 \le i \le \ell)$ are the fundamental weights of \mathfrak{g} . For convenience, let $\lambda_0 = 0$. Then, define $k\Lambda_i = (k, \lambda_i)$ for $0 \le i \le \ell$.

From \mathfrak{g} to $\widetilde{\mathfrak{g}}$

Given $\lambda \in \mathfrak{h}^*$ and $k \in \mathbb{C}$, we can define a linear functional $(k, \lambda) \in \tilde{\mathfrak{h}}^*$ by the following:

- For all $h \in \mathfrak{h}$, let $(k, \lambda)(h) = \lambda(h)$.
- On $\mathbb{C}c$, let $(k, \lambda)(c) = k$.
- On $\mathbb{C}d$, let $(k, \lambda)(d) = 0$.

Recall that λ_i $(1 \le i \le \ell)$ are the fundamental weights of \mathfrak{g} . For convenience, let $\lambda_0 = 0$. Then, define $k\Lambda_i = (k, \lambda_i)$ for $0 \le i \le \ell$.

 $\Lambda_0 = (1, \lambda_0) = (1, 0), \Lambda_1 = (1, \lambda_1), ..., \Lambda_\ell = (1, \lambda_\ell)$ are the fundamental weights for \tilde{g} .

Fix a complex number $k \in \mathbb{C}$ and let U be the irreducible finite dimensional \mathfrak{g} -module with highest-weight $\lambda \in P_+$. Extend the \mathfrak{g} -module, U, to a $\hat{\mathfrak{g}}_{(\leq 0)}$ -module U_k as follows:

Fix a complex number $k \in \mathbb{C}$ and let U be the irreducible finite dimensional \mathfrak{g} -module with highest-weight $\lambda \in P_+$. Extend the \mathfrak{g} -module, U, to a $\hat{\mathfrak{g}}_{(\leq 0)}$ -module U_k as follows:

• Let $U_k = U$ (as a \mathbb{C} -vector space).

Fix a complex number $k \in \mathbb{C}$ and let U be the irreducible finite dimensional \mathfrak{g} -module with highest-weight $\lambda \in P_+$. Extend the \mathfrak{g} -module, U, to a $\hat{\mathfrak{g}}_{(\leq 0)}$ -module U_k as follows:

• Let $U_k = U$ (as a \mathbb{C} -vector space).

• Let $\hat{\mathfrak{g}}_{(-)}$ act trivially on U_k .

Fix a complex number $k \in \mathbb{C}$ and let U be the irreducible finite dimensional \mathfrak{g} -module with highest-weight $\lambda \in P_+$. Extend the \mathfrak{g} -module, U, to a $\hat{\mathfrak{g}}_{(\leq 0)}$ -module U_k as follows:

- Let $U_k = U$ (as a \mathbb{C} -vector space).
- Let $\hat{\mathfrak{g}}_{(-)}$ act trivially on U_k .
- Let c act as the scalar $k1_U$ (i.e. $c \cdot u = ku$ for all $u \in U$).

Fix a complex number $k \in \mathbb{C}$ and let U be the irreducible finite dimensional \mathfrak{g} -module with highest-weight $\lambda \in P_+$. Extend the \mathfrak{g} -module, U, to a $\hat{\mathfrak{g}}_{(\leq 0)}$ -module U_k as follows:

- Let $U_k = U$ (as a \mathbb{C} -vector space).
- Let $\hat{\mathfrak{g}}_{(-)}$ act trivially on U_k .

• Let c act as the scalar $k1_U$ (i.e. $c \cdot u = ku$ for all $u \in U$). Define the Verma module (of level k and highest-weight (k, λ)) as follows:

 $V(k,\lambda) = U(\hat{\mathfrak{g}}) \otimes_{U(\hat{\mathfrak{g}}_{(\leq 0)})} U_k.$

The Simple VOA $L(k\Lambda_0)$

Theorem: Suppose that $k \neq -h^{\vee}$ the dual Coxeter number. Then,

• $V(k\Lambda_0) = V(k, 0)$ is a vertex operator algebra,

The Simple VOA $L(k\Lambda_0)$

Theorem: Suppose that $k \neq -h^{\vee}$ the dual Coxeter number. Then,

- $V(k\Lambda_0) = V(k, 0)$ is a vertex operator algebra,
- N (the maximal proper submodule) is an ideal of $V(k\Lambda_0)$, and
- $L(k\Lambda_0)$ (= $V(k\Lambda_0)/N$) is a simple vertex operator algebra.

The Simple VOA $L(k\Lambda_0)$

Theorem: Suppose that $k \neq -h^{\vee}$ the dual Coxeter number. Then,

- $V(k\Lambda_0) = V(k, 0)$ is a vertex operator algebra,
- N (the maximal proper submodule) is an ideal of $V(k\Lambda_0)$, and
- $L(k\Lambda_0)$ (= $V(k\Lambda_0)/N$) is a simple vertex operator algebra.

Theorem: If $k \neq -h^{\vee}$ and $\lambda \in P_+$, then $L(k, \lambda)$ (= $V(k, \lambda)/(\text{maximal submodule})$ is an irreducible $V(k\Lambda_0)$ -module.

Li's Theorem

For all that follows, let $k \in \mathbb{Z}_{>0}$.

Li's Theorem

For all that follows, let $k \in \mathbb{Z}_{>0}$. Let $H \in P^{\vee}$. Define

$$\Delta(H, x) = x^{H_0} \exp\left(\sum_{k=1}^{\infty} \frac{H_k}{-k} (-x)^{-k}\right).$$

Li's Theorem

For all that follows, let $k \in \mathbb{Z}_{>0}$. Let $H \in P^{\vee}$. Define

$$\Delta(H, x) = x^{H_0} \exp\left(\sum_{k=1}^{\infty} \frac{H_k}{-k} (-x)^{-k}\right).$$

Theorem [Li]: If $L(k, \lambda)$ is an irreducible $L(k\Lambda_0)$ -module and $H \in Q^{\vee}$, then $(L(k, \lambda), Y(\cdot, x))$ is isomorphic to $(L(k, \lambda), Y(\Delta(H, x) \cdot, x))$ as an $L(k\Lambda_0)$ -module.

The Automorphism's Effect Notation: For $v \in L(k\Lambda_0)$, let

$$Y(v,x) = \sum_{m \in \mathbb{Z}} v(m) x^{-m-1},$$

$$Y(\Delta(H, x)v, x) = \sum_{m \in \mathbb{Z}} v_{(H)}(m) x^{-m-1}$$

and

$$Y(\Delta(H, x)\omega, x) = \sum_{m \in \mathbb{Z}} L_{(H)}(m) x^{-m-2}$$

The Automorphism's Effect Lemma: For $1 \le i, j \le \ell$,

$$(H^{(j)})_{(H_i)}(0) = H^{(j)}(0) + \frac{2}{\langle \alpha_i, \alpha_i \rangle} \delta_{i,j} k$$

$$L_{(H_i)}(0) = L(0) + H_i(0) + \frac{2}{\langle \alpha_i, \alpha_i \rangle} \delta_{i,j} k$$

= $L(0) + \sum_{j=1}^{\ell} a_{ji} H^{(j)}(0) + \frac{2}{\langle \alpha_i, \alpha_i \rangle} \delta_{i,j} k$

Characters

Definition: Let $L(k, \lambda)$ be an irreducible $L(k\Lambda_0)$ -module.

The (full) character of $L(k, \lambda)$ is given by $\chi_{L(k,\lambda)}(x_1, x_2, ..., x_{\ell}; q) =$ $\operatorname{tr}_{L(k,\lambda)} x_1^{H^{(1)}(0)} x_2^{H^{(2)}(0)} ... x_{\ell}^{H^{(\ell)}(0)} q^{L(0)}.$

The Main Theorem

Main Theorem: If $L(k, \lambda)$ is an irreducible $L(k\Lambda_0)$ -module, then for each $1 \le i \le \ell$ we have that

 $\chi_{L(k,\lambda)}(x_1, x_2, ..., x_{\ell}; q) =$

 $(x_iq)^{\frac{2k}{\langle \alpha_i,\alpha_i \rangle}}\chi_{L(k,\lambda)}(x_1q^{a_{1i}},x_2q^{a_{2i}},\dots,x_\ell q^{a_{\ell i}};q).$

Technical Slides – p.18/3.

Recurrence Relations

Notation: Let

$$\mathbf{n} = (n_1, n_2, \dots, n_\ell) \in \mathbb{Z}^\ell$$

and

$$\mathbf{x^n} = x_1^{n_1} x_2^{n_2} \dots x_\ell^{n_\ell}.$$

Recurrence Relations

Notation: Let

$$\mathbf{n} = (n_1, n_2, \dots, n_\ell) \in \mathbb{Z}^\ell$$

and

$$\mathbf{x}^{\mathbf{n}} = x_1^{n_1} x_2^{n_2} \dots x_\ell^{n_\ell}.$$

Define coefficients $A(\mathbf{n}; q) \in q^{-\mu}\mathbb{C}[[q]]$ as follows:

$$\chi_{L(k,\lambda)}(x_1, x_2, \dots, x_\ell; q) = \sum_{\mathbf{n} \in \mathbb{Z}^\ell} A(\mathbf{n}; q) \mathbf{x}^{\mathbf{n}}$$

Note: $L(0) = -d + \mu$ for some $\mu \in \mathbb{C}$.

Recurrence Relations

Corollary: For $1 \leq i \leq \ell$ and $(n_1, ..., n_\ell) \in \mathbb{Z}^\ell$,

$$A(n_1, \dots, n_\ell; q) =$$

$$A(n_1, \dots, n_{i-1}, n_i - \frac{2k}{\langle \alpha_i, \alpha_i \rangle}, n_{i+1}, \dots, n_\ell; q) q^{-\frac{2k}{\langle \alpha_i, \alpha_i \rangle} + \sum_{j=1}^\ell a_{ji} n_j}.$$

A Special Case

Let us specialize to level k = 1 and \mathfrak{g} of (ADE)-type (simply laced). Then $\langle \alpha_i, \alpha_i \rangle = 2$ for all $1 \le i \le \ell$. So we have the following recurrence relations:

For $1 \leq i \leq \ell$ and $(n_1, n_2, ..., n_\ell) \in \mathbb{Z}^\ell$,

 $A(n_1, \dots, n_\ell; q) =$

 $A(n_1, ..., n_{i-1}, n_i-1, n_{i+1}, ..., n_\ell; q)q^{-1+\sum_{j=1}^{\ell} a_{ji}n_j}$

A Sum Formula

Using the lattice construction of $L(\Lambda_0) = V_Q$ we find that

 $\overline{A(0, ..., 0; q)} = \dim_{q} S(\mathfrak{h} \otimes t^{-1} \mathbb{C}[t^{-1}])$ $= \prod_{j=1}^{\infty} (1 - q^{j})^{-\ell}.$

A Sum Formula

Using the lattice construction of $L(\Lambda_0) = V_Q$ we find that

 $\overline{A(0, ..., 0; q)} = \dim_q S(\mathfrak{h} \otimes t^{-1} \mathbb{C}[t^{-1}])$ $= \prod_{j=1}^{\infty} (1 - q^j)^{-\ell}.$

Theorem: Let \mathfrak{g} be a simple Lie algebra of (ADE)-type.

$$\chi_{L(\Lambda_0)}(\mathbf{x};q) = \prod_{j=1}^{\infty} (1-q^j)^{-\ell} \sum_{\mathbf{n}\in\mathbb{Z}^\ell} q^{\frac{1}{2}\mathbf{n}C\mathbf{n}^t} \mathbf{x}^{\mathbf{n}}$$

Characters

Recall that $(ht(\theta) = height of the highest long root)$

$$d_P = (\operatorname{ht}(\theta) + 1)d + ad(\rho^{\vee})$$

= $(\operatorname{ht}(\theta) + 1)(-L(0) + \mu) + ad(\rho^{\vee})$

Characters

Recall that $(ht(\theta) = height of the highest long root)$

$$d_P = (\operatorname{ht}(\theta) + 1)d + ad(\rho^{\vee})$$

= $(\operatorname{ht}(\theta) + 1)(-L(0) + \mu) + ad(\rho^{\vee})$

Definition: Let $L(k, \lambda)$ be an irreducible $L(k\Lambda_0)$ -module.

The principal character of $L(k, \lambda)$ is given by

 $\chi_{L(k,\lambda)}^{P}(q) = \operatorname{tr}_{L(k,\lambda)} q^{-d_{P}}$ $= q^{-(\operatorname{ht}(\theta)+1)\mu} \chi_{L(k,\lambda)}(q^{-1}, \dots q^{-1}; q^{\operatorname{ht}(\theta)+1}).$

The Principal Character

Corollary: Let \mathfrak{g} be of (ADE)-type (i.e. simply laced) and k = 1. Then,

 $\chi_{L(\Lambda_0)}^P(q) = \prod_{j\geq 1} (1 - q^{(\operatorname{ht}(\theta)+1)j})^{-\ell} \sum_{\mathbf{n}\in\mathbb{Z}^\ell} q^{\frac{\operatorname{ht}(\theta)+1}{2}\mathbf{n}C\mathbf{n}^t - \sum_{i=1}^\ell n_i}$

The Principal Character

Corollary: Let \mathfrak{g} be of (ADE)-type (i.e. simply laced) and k = 1. Then,

 $\chi_{L(\Lambda_0)}^P(q) = \prod_{j\geq 1} (1 - q^{(\operatorname{ht}(\theta)+1)j})^{-\ell} \sum_{\mathbf{n}\in\mathbb{Z}^\ell} q^{\frac{\operatorname{ht}(\theta)+1}{2}\mathbf{n}C\mathbf{n}^t - \sum_{i=1}^\ell n_i}$

Thus we have obtained a multisum formula for the principal character. Now using the previously known formulas, we obtain families of multisum identities...

Theorem: If $C = (a_{ij})$ is the Cartan matrix of type A_{ℓ} ($\ell \ge 1$),

$$\prod_{j\geq 1} \frac{(1-q^{(\ell+1)j})^{(\ell+1)}}{(1-q^j)} = \sum_{\mathbf{n}\in\mathbb{Z}^\ell} q^{\frac{\ell+1}{2}\mathbf{n}C\mathbf{n}^t - \sum_{i=1}^\ell n_i}.$$

Example: Type A_1

Example: For type A and rank $\ell = 1, C = (2)$. So we have,

$$\prod_{j\geq 1} \frac{(1-q^{2j})^2}{(1-q^j)} = \sum_{n\in\mathbb{Z}} q^{2n^2-n}$$

This is a well known formula credited to Gauss.

Example: Type A_2

Example: For type A and rank $\ell = 2$,

$$C = \left(\begin{array}{cc} 2 & -1 \\ -1 & 2 \end{array}\right).$$

So we have,

$$\prod_{j\geq 1} \frac{(1-q^{3j})^3}{(1-q^j)} = \sum_{n_1,n_2\in\mathbb{Z}} q^{3(n_1^2-n_1n_2+n_2^2)-(n_1+n_2)}.$$

Type D_ℓ

Theorem: If $C = (a_{ij})$ is the Cartan matrix of type D_{ℓ} ($\ell \ge 4$),

$$\prod_{j\geq 1} \frac{(1-q^{2(\ell-1)j})^{\ell}}{(1-q^{2j-1})(1-q^{(\ell-1)(2j-1)})}$$

$$\sum_{\mathbf{n}\in\mathbb{Z}^{\ell}}q^{(\ell-1)\mathbf{n}C\mathbf{n}^{t}-\sum_{i=1}^{\ell}n_{i}}.$$

Technical Slides – p.28/3.

Example: Type D_4

Example: For type D and rank $\ell = 4$,

$$C = \begin{pmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & -1 \\ 0 & -1 & 2 & 0 \\ 0 & -1 & 0 & 2 \end{pmatrix}$$

٠

Example: Type D_4

Example: For type D and rank $\ell = 4$, So we have,

$$\prod_{j\geq 1} \frac{(1-q^{6j})^4}{(1-q^{(2j-1)})(1-q^{(6j-3)})}$$

 $\sum_{n_1,\dots,n_4\in\mathbb{Z}} q^{6(n_1^2+n_2^2+n_3^2+n_4^2-n_1n_2-n_2n_3-n_2n_4)-(n_1+n_2+n_3+n_4)}.$

Type E_6

Theorem: If $C = (a_{ij})$ is the Cartan matrix of type E_6 , then

$$\varphi(q^{12})^6 \prod_{\substack{j \equiv \pm 1, \pm 4, \pm 5 \pmod{12}}} (1 - q^j)^{-1}$$

$$\sum_{\mathbf{n}\in\mathbb{Z}^6}q^{6\mathbf{n}C\mathbf{n}^t-\sum_{i=1}^6n_i}$$

where $\varphi(q) = \prod_{j \ge 1} (1 - q^j)$ is the Euler product function.

Type E_7

Theorem: If $C = (a_{ij})$ is the Cartan matrix of type E_7 , then

$$\varphi(q^{18})^7 \prod_{\substack{j \equiv \pm 1, \pm 5, \pm 7,9 \pmod{18}}} (1 - q^j)^{-1}$$

$$\sum_{\mathbf{n}\in\mathbb{Z}^7} q^{9\mathbf{n}C\mathbf{n}^t - \sum_{i=1}^7 n_i}$$

where $\varphi(q) = \prod_{j \ge 1} (1 - q^j)$ is the Euler product function.

Type E_8

Theorem: If $C = (a_{ij})$ is the Cartan matrix of type E_8 , then

$$\varphi(q^{30})^8 \prod_{\substack{j \equiv \pm 1, \pm 7, \pm 11, \pm 13 \pmod{30}}} (1 - q^j)^{-1}$$

$$\sum_{\mathbf{n}\in\mathbb{Z}^8} q^{15\mathbf{n}C\mathbf{n}^t - \sum_{i=1}^8 n_i}$$

where $\varphi(q) = \prod_{j \ge 1} (1 - q^j)$ is the Euler product function.