
Supplemental Notes: Line Integrals

Notation:

• Let C be an oriented curve parameterized by X(t) = (x(t), y(t), z(t)) where a ≤ t ≤ b.

• −C denotes the curve C with its orientation reversed.
C1 + C2 means take curve C1 and curve C2 and put them together.

• Let Let F = (P,Q,R) be a vector field defined on (and around) C.

• Define s(t) =

∫ t

a

|X′(u)| du. This is the arc length function. Note: s(b) is the arc length of C.

• Recall that T(t) =
X′(t)

|X′(t)|
is the unit Tangent function.

• Also, N(t) =
T′(t)

|T′(t)|
is the unit Normal and B(t) = T(t)×N(t) is the Binormal.

Differentiate the arc length function and get
ds

dt
= |X′(t)| (by the fundamental theorem of calculus).

Treating ds and dt like formal variables, we get “ds = |X′(t)| dt”. Following the same convention we
make the following notational definitions:

• ds = |X′(t)| dt =
√

(x′(t))2 + (y′(t))2 + (z′(t))2 dt

• x = x(t), y = y(t), and z = z(t) so dx = x′(t)dt, dy = y′(t)dt and dz = z′(t)dt

• X(t) = (x(t), y(t), z(t)) and so dX = X′(t) dt = (x′(t), y′(t), z′(t)) dt = (dx, dy, dz)

• F = F(X(t)) = (P (x(t), y(t), z(t)), Q(x(t), y(t), z(t)), R(x(t), y(t), z(t)))

So we can define line integrals:

•
∫
C

g(x, y, z) ds =

∫ b

a

g(X(t)) |X′(t)| dt =

∫ b

a

= g(x(t), y(t), z(t))
√

(x′(t))2 + (y′(t))2 + (z′(t))2 dt

•
∫
C

F · dX =

∫
C

P dx+Qdy +Rdz =

∫ b

a

F(X(t)) ·X′(t) dt

=

∫ b

a

P (x(t), y(t), z(t))x′(t) +Q(x(t), y(t), z(t))y′(t) +R(x(t), y(t), z(t))z′(t) dt

Note:

∫
C

1 ds = Arc Length of C

Remember that both types of line integrals are independent of parameterization (as long as
the orientation of C is preserved) – that is – using a different parameterization will not change the
answer. Also, if the line integral is done with respect to arc length, then orientation does not matter.
Whereas, with the other type of line integral, reversing the orientation negates the result.

•
∫
−C

g(x, y, z) ds =

∫
C

g(x, y, z) ds

•
∫
−C

F · dX = −
∫
C

F · dX



Work and Flux
Suppose F is a force field (like the force due to gravity). We know that work is force dotted with
a displacement vector (when force is constant anyway). Consider a particle being moved along an
oriented curve C. If we focus on a small enough portion of our curve the force should be (approximately)
constant. So the work to move the particle along this small portion of the curve will be F ·T ∆s where
T is the unit tangent and ∆s is the length of this part of the curve. Why T ∆s? Well, since we are
focusing on such a small part of our curve, the curve should look (approximately) like a straight line,
so there is no difference between our curve and it’s tangent – “moving along the curve = moving along
the tangent” (approximately anyway). Now adding up the work moving along all small pieces of our
curve we get ΣF ·T ∆s which translated to the world of integrals is...

Work =

∫
C

F ·T ds =

∫
C

F · X′

|X′|
|X′| dt =

∫
C

F · dX

Seeing the appearance of T in the integral above might lead you to ask, “What happens if we use
N (the unit normal) instead?” The following integral is called the flux of F across C (Note: we can’t
get rid of N like we did T):

Flux =

∫
C

F ·N ds

Imagine that F is the velocity of some fluid crossing the curve C (pretend C is a filter or a net). Then
F ·N will grab the component of the velocity vector which is perpendicular to C. So it picks out the
“part” of the fluid crossing C. Thus flux is measuring how much fluid is crossing over the curve C.

Example: See the book for examples involving work. Let’s compute the flux of F(x, y) = (−3y2,−2x)
across C where C is the quarter of the unit circle in the first quadrant oriented counter-clockwise. C is
parametrized by X(t) = (cos(t), sin(t)) with 0 ≤ t ≤ π/2 so that X′(t) = (− sin(t), cos(t)) = T(t) since

|X′(t)| = 1. Next, T′(t) = (− cos(t),− sin(t)) so N(t) =
1

|T′(t)|
T′(t) = (− cos(t),− sin(t)).

Flux =

∫
C

F ·N ds =

∫ π/2

0

(−3(sin(t))2,−2 cos(t)) · (− cos(t),− sin(t)) 1 dt

=

∫ π/2

0

3(sin(t))2 cos(t) + 2 sin(t) cos(t) dt

= (sin(t))3 + (sin(t))2
∣∣∣π/2
0

= (13 + 12)− (03 + 02) = 2

A plot of F (scaled down) and C.

Note: Since the curve C is oriented counter-clockwise, its normal vectors point inward and thus we
get a positive flux.



Center of mass
Suppose we have a wire bent in the shape of the curve C and suppose this write has density ρ(x, y, z) at
each point (x, y, z) along the curve. Then if we focus on a little segment of the wire where the density
is roughly constant, the mass of the segment of wire will be approximately ρ(x0, y0, z0)∆s where ∆s is
the length of this piece of the wire. So if we add up Σρ∆s we should get the total mass of the wire
(approximately anyway). Translating to the world of integrals we have...

• mass = m =

∫
C

ρ(x, y, z) ds

• Let x̄ =
1

m

∫
C

xρ(x, y, z) ds, ȳ =
1

m

∫
C

yρ(x, y, z) ds, and z̄ =
1

m

∫
C

zρ(x, y, z) ds

Where x̄, ȳ, and z̄ are weighted averages of x, y, and z coordinates. We call (x̄, ȳ, z̄) the center of
mass of the wire. If ρ(x, y, z) = c = constant 6= 0, then (x̄, ȳ, z̄) is called the centroid of C.

Example: Let C be the helix parameterized by X(t) = (cos(t), sin(t),
√

3t) for 0 ≤ t ≤ 2π. Then

X′(t) = (− sin(t), cos(t),
√

3) so |X′(t)| =
√

(− sin(t))2 + (cos(t))2 + (
√

3)2 =
√

2. Thus ds = 2 dt. The

arc length of C is... ∫
C

1 ds =

∫ 2π

0

2 dt = 4π

Let’s compute the centroid of C. So let ρ be some non-zero constant, say ρ = 1 (the easiest constant
to work with).

x̄ =
1

m

∫
C

x ds =
1

4π

∫ 2π

0

cos(t)2 dt = 0

ȳ =
1

m

∫
C

y ds =
1

4π

∫ 2π

0

sin(t)2 dt = 0

z̄ =
1

m

∫
C

z ds =
1

4π

∫ 2π

0

√
3t2 dt =

√
3

4π

∫ 2π

0

2t dt =

√
3

4π
t2
∣∣∣2π
0

=

√
3

4π
(2π)2 − 0 = π

√
3 ≈ 5.4414

Notice the helix’s z-coordinates range from z = 0 to z =
√

3 · 2π so z̄ is exactly half way between 0 and√
3 · 2π (looking at a picture of this helix should convince you that this is the right answer).

Answer: (x̄, ȳ, z̄) = (0, 0, π
√

3)



Conservative Vector Fields
Let F be a vector field defined on Rn and let R be some (open) subset of Rn. Here’s a few definitions:

• F is a gradient vector field if there exists a (scalar valued) function f such that F = ∇f .
f is called a potential function.

• We say an integral

∫
C

F · dX is path independent if for any other curve C2 with the same end

points and orientation as C we have that

∫
C

F · dX =

∫
C2

F · dX.

• F is a conservative vector field on R if

∫
C

F · dX is path independent for all curves C which

lie inside the region R.

Let C and C2 be curves with the same start and end points (and the same orientation).

The curve C1 − C2 is called a simple closed curve
Closed because it’s start and end points match and

Simple because it does not cross itself.

Then assuming path independence we have...∫
C1

F · dX =

∫
C2

F · dX ⇐⇒
∫
C1

F · dX−
∫
C2

F · dX = 0 ⇐⇒∫
C1

F · dX +

∫
−C2

F · dX = 0 ⇐⇒
∫
C1−C2

F · dX = 0

So requiring path independence is the same as requiring that all line integrals around closed loops turn
out to be 0. This explains the name “conservative” since if F is a force field and so these line integrals
compute work, then when a particle starts and ends in the same place no work has been done because
energy was conserved.

A non-simple closed curve.



Recall our notation: C is a curve parameterized by X(t) where a ≤ t ≤ b. Let A = X(a) (the
starting point) and B = X(b) (the ending point).

Theorem: (The Fundamental Theorem of Line Integrals)∫
C

∇f · dX = f(B)− f(A)

proof:∫
C

∇f · dX =

∫ b

a

∇f(X(t)) ·X′(t) dt =

∫ b

a

(f◦X)′(t) dt = (f◦X)(t)
∣∣∣b
a

= f(X(b))−f(X(a)) = f(B)−f(A)

The second equality is established using the chain rule and the third equality is the regular fundamental
theorem of calculus. �

The fundamental theorem of line integrals states that line integrals involving gradient vector fields
can be computed using the endpoints of curves alone! This says that line integrals involving gradient
vector fields are path independent. Put another way...

Theorem: Gradient vector fields are conservative.

The converse of this theorem also holds, but it is a bit harder to show. Let R be a connected
open subset of Rn. By “connected” we mean that any two points in R are connected by a curve in R.
“Open” means that R has “fuzzy” edges. Technically we mean that given any point in R there is a
disk/ball surrounding that point (possibly with an extremely small radius) which lies entirely inside R.

Theorem: If F is conservative on an (open connected) region R, then F is a gradient vector field.

proof: We will prove this for a vector field F(x, y) = (P (x, y), Q(x, y)) defined on an open connected
subset of R2, but the theorem still holds in any dimension (the same proof works too – but the notation
gets a bit messy).

First, fix a point (a, b) in R. Let (x, y) be some point in R and let C(x,y) denote some curve from
(a, b) to (x, y). Note that such a curve exists since R is connected.

Let’s define our potential potential function: f(x, y) =
∫
C(x,y)

F · dX. We should make the following

very important note: since F is conservative, the value of our integral is independent of our choice
of path. Thus any choice of C(x,y) will yield the same value f(x, y). In other words, our function f is
“well defined” on all of R.

We want to show that ∇f = F. So we need to show fx = P and fy = Q. Let’s focus on fx = P .

First, some prep work. Fix some point
(x, y) in R and let h be a real number
small enough so that (x + h, y) is in R
as well (such numbers exist because R is
open). Next, let C(x+h,y) = C(x,y) + Ch
where C(x,y) is any path from (a, b) to (x, y)
and Ch is the line segment parameterized
by X(t) = (t, y) where x ≤ t ≤ x + h. So
C(x+h,y) is a path from (a, b) to (x, y) to
(x+ h, y).



f(x+ h, y) =

∫
C(x+h,y)

F · dX =

∫
C(x,y)+Ch

F · dX =

∫
C(x,y)

F · dX +

∫
Ch

F · dX = f(x, y) +

∫
Ch

F · dX

We will compute the integral over Ch by plugging in our parameterization. Remember X(t) = (t, y) so
X′(t) = (1, 0) (since y is fixed and t is our variable). Thus

f(x+ h, y)− f(x, y) =

∫
Ch

F · dX =

∫ x+h

x

(P (t, y), Q(t, y)) · (1, 0) dt =

∫ x+h

x

P (t, y) dt

Let g(x, y) be an antiderivative (integrating with respect to x) of P (x, y) (so gx = P ). Then

f(x+ h), y)− f(x, y) =

∫ x+h

x

P (t, y) dt = g(t, y)
∣∣∣x+h
x

= g(x+ h, y)− g(x, y)

Finally, we find that

fx(x, y) = lim
h→0

f(x+ h, y)− f(x, y)

h
= lim

h→0

g(x+ h, y)− g(x, y)

h
= gx(x, y) = P (x, y)

A similar proof shows that fy(x, y) = Q(x, y). Therefore, ∇f(x, y) = (fx(x, y), fy(x, y)) =
(P (x, y), Q(x, y)) = F(x, y) and thus F is a gradient vector field on R. �

Thus, on an (open connected) region R, every gradient vector field is conservative and every con-
servative vector field is a gradient vector field. This leaves us with the question, “Given a vector field
F, how can we tell if F is gradient/conservative?” The following theorem helps us partially answer the
question:

Theorem: Let F = (P,Q) and suppose P and Q have continuous first partials on some region R.
If F is gradient on R, then Py = Qx. This also tells us that if Py 6= Qx at some point in R then F
cannot be gradient on R.

proof: Suppose that F = ∇f . Then P = fx and Q = fy. Thus Py = fxy = fyx = Qx (since we
assumed that these partials are continuous Clairaut’s theorem applies). �

Next, we might ask, “What about vector fields in R3?” To discuss these we need to introduce the
“curl” operator.

Definition: Given a vector field F = (P,Q,R), define curl(F) = ∇× F as follows:

curl(F) = ∇×F =

∣∣∣∣∣∣∣
~ı ~ ~k
∂
∂x

∂
∂y

∂
∂z

P Q R

∣∣∣∣∣∣∣ =

∣∣∣∣∣ ∂
∂y

∂
∂z

Q R

∣∣∣∣∣~ı−
∣∣∣∣∣ ∂
∂x

∂
∂z

P R

∣∣∣∣∣~+

∣∣∣∣∣ ∂
∂x

∂
∂y

P Q

∣∣∣∣∣~k = (Ry −Qz, Pz −Rx, Qx − Py)

The notation indicates that you are (sort of) “crossing” the gradient operator with your vector field.

Quick Example: Let F(x, y, z) = (xyz, x2y, y2 + z2). Then curl(F) = ∇× F = . . .∣∣∣∣∣∣∣
~ı ~ ~k
∂
∂x

∂
∂y

∂
∂z

xyz x2y y2 + z2

∣∣∣∣∣∣∣ =

∣∣∣∣∣ ∂
∂y

∂
∂z

x2y y2 + z2

∣∣∣∣∣~ı−
∣∣∣∣∣ ∂
∂x

∂
∂z

xyz y2 + z2

∣∣∣∣∣~+

∣∣∣∣∣ ∂
∂x

∂
∂y

xyz x2y

∣∣∣∣∣~k = (2y − 0, xy − 0, 2xy − xz)



An Important Computation: If f has continuous second partials, then curl(∇f) = ∇×∇f = 0.

curl(∇f) =

∣∣∣∣∣∣∣
~ı ~ ~k
∂
∂x

∂
∂y

∂
∂z

fx fy fz

∣∣∣∣∣∣∣ =

∣∣∣∣∣ ∂
∂y

∂
∂z

fy fz

∣∣∣∣∣~ı−
∣∣∣∣∣ ∂
∂x

∂
∂z

fx fz

∣∣∣∣∣~+
∣∣∣∣∣ ∂
∂x

∂
∂y

fx fy

∣∣∣∣∣~k = (fzy−fyz, fxz−fzx, fyx−fxy) = (0, 0, 0)

Since we assumed that f has continuous second partials, Clairaut’s theorem applies (mixed partials are
equal).

This computation shows us that...

Theorem: Let F = (P,Q,R) and suppose that P , Q, and R have continuous first partials on some
region R. If F is a gradient vector field, then curl(F) = 0 on R. This also tells us that if curl(F) 6= 0
at some point in R, then F cannot be a gradient vector field on R.

Note: If F(x, y, z) = (P (x, y), Q(x, y), 0) where P and Q do not depend on z, then we have:
curl(F) = (0, 0, Qx − Py) = 0 if and only if Py = Qx. So our 2-dimensional theorem is just a special
case of the 3-dimensional theorem.

Our final question is, “Do the converses of this theorem and the last theorem hold?” The answer is
YES on “simply” connected domains and possibly NO on other domains.

Definition: A region R of Rn is simply connected if R is connected (every two points in R can
by joined by a path in R) and every closed path can be contracted to a point. Without getting
too technical, the idea is: Given a closed path (one whose start and end points are the same), we can
deform/stretch/contract it until there is nothing left. Essentially, we need R to be free of 1-dimensional
holes.

R1 is not connected, R2 is connected but not simply, R3 is simply connected

On the left, the curve C can be contracted to a point.
However, on the right, the curve C gets “stuck” on the hole in R2.



Theorem: Let R be a simply connected open subset of R3 and suppose curl(F) = 0 on R. Then
F is a conservative/gradient vector field on R. If R is a simply connected open subset of R2 and
F = (P,Q) where Py = Qx on R, then F is a conservative/gradient vector field on R.

proof: The 2-dimensional version follows from Green’s theorem and the 3-dimensional version follows
from Stoke’s theorem.

Accepting these theorems for the time being, here’s the proof: Let C be a simple closed curve in
R. If R is a subset of R2, then C bounds some region D. If R is a subset of R3, since R is simply
connected, we can contract C to a point, while doing this C sweeps out a surface S in R.

D is the region bounded by C in R2, S is the surface swept out as C is contracted to a point in R3.

In 2-dimensions use Green’s theorem:

∫
C

F · dX =

∫∫
D

Qx − Py dA =

∫∫
D

0 dA = 0

or

In 3-dimensions use Stoke’s theorem:

∫
C

F · dX =

∫∫
S

curl(F) ·dS =

∫∫
S

0 · dS = 0

So we have (in either case) that F is conservative. �

Example: We showed that for F(x, y, z) = (xyz, x2y, y2 + z2), curl(F) = (2y, xy, x(2y − z)) 6= 0. So
this vector field is not conservative. Likewise, if F(x, y) = (x2, xy) then Py = 0 6= Qx = y so F is not
conservative.

Example: Let F(x, y) = (2x + y2, ey + 2xy). Then Py = 2y = Qx so F is conservative (everywhere).
Let’s find a potential function for F.

We need to find a function f so that fx = 2x + y2 and fy = ey + 2xy. Integrating both of these
equations we find that f(x, y) = x2+xy2+g(y) and f(x, y) = ey+xy2+h(x) (notice that our “arbitrary
constants” need to be functions of the “other” variable). Putting these answers together we find that
f(x, y) = x2 + xy2 + ey + C where C is any constant (this time an honest to goodness constant not a
function). In particular, F(x, y) = ∇f(x, y) where f(x, y) = x2 + xy2 + ey (choosing C = 0).

Example: Let F(x, y, z) = (2xyz + z, x2z + 3y2 + ez, x2y + yez + x). Then

curl(F) =

∣∣∣∣∣∣∣
~ı ~ ~k
∂
∂x

∂
∂y

∂
∂z

2xyz + z x2z + 3y2 + ez x2y + yez + x

∣∣∣∣∣∣∣ =

∣∣∣∣∣ ∂
∂y

∂
∂z

x2z + 3y2 + ez x2y + yez + x

∣∣∣∣∣~ı−
∣∣∣∣∣ ∂

∂x
∂
∂z

2xyz + z x2y + yez + x

∣∣∣∣∣~+

∣∣∣∣∣ ∂
∂x

∂
∂y

2xyz + z x2z + 3y2 + ez

∣∣∣∣∣~k



=
(
(x2 + ez)− (x2 + ez), (2xy + 1)− (2xy + 1), (2xz)− (2xz)

)
= (0, 0, 0)

Thus F is conservative. Again, let’s find a potential function.
This time we need to find a function f so that fx = 2xyz + z, fy = x2z + 3y2 + ez, and fz =

x2y+ yez + x. Integrating all three of these equations (again remember that the “constants” are really
functions of the “other” variables), we get f(x, y, z) = x2yz + xz + g1(y, z), f(x, y, z) = x2yz + y3 +
yez + g2(x, z), and f(x, y, z) = x2yz + yez + xz + g3(x, y). So putting this all together we have that
f(x, y, z) = x2yz + xz + y3 + yez + C where C is any constant. In particular, F(x, y, z) = ∇f(x, y, z)
where f(x, y, z) = x2yz + xz + y3 + yez (choosing C = 0).

Example: Let F(x, y) =

(
−y

x2 + y2
,

x

x2 + y2

)
. We should check to see if F is conservative. After some

work we find that...

Py = Qx =
y2 − x2

(x2 + y2)2

So F is conser...WAIT! Notice that these partials are not continuous at the origin (they’re not even
defined there). We can only conclude that F is conservative on any simply connected domain which
does not contain the origin. Notice that “simply connected” rules out the “domain” of F which is
R2 − {(0, 0} (the whole plane with the origin deleted). The partials match on the entire domain of F,
the domain is connected, but it isn’t simply connected. In fact, to demonstrate what can happen...

Let C be the unit circle oriented counter-clockwise. Parameterize C by X(t) = (cos(t), sin(t) where
0 ≤ t ≤ 2π. ∫

C

F · dX =

∫ 2π

0

(
− sin(t)

cos2(t) + sin2(t)
,

cos(t)

cos2(t) + sin2(t)

)
· (− sin(t), cos(t)) dt

=

∫ 2π

0

sin2(t) + cos2(t) dt =

∫ 2π

0

1 dt = 2π

Since our integral around the closed curve C is not 0, F is not conservative on R2 − {(0, 0)}.
Note: Let C ′ be some closed curve. It can be shown that

∫
C′

F · dX = 2π(A−B) where A is the

number of times C ′ wraps itself around the origin in a counter-clockwise fashion and B is the number

of times that C ′ wraps itself around the origin in a clockwise fashion.
1

2π

∫
C′

F · dX computes “winding

numbers”.

∫
C′

F · dX = 2π(2− 1) = 2π


