SUPPLEMENTAL PROBLEMS: VECTOR CALCULUS

(FINDING POTENTIALS, GREENS THEOREM, STOKES THEOREM, AND THE DIVERGENCE THEOREM)

Determine if the following vector fields are conservative. For those which are conservative, find a potential function.

1.
$$\mathbf{F}(x,y) = (x^2 + y^2, xy)$$

2.
$$\mathbf{F}(x,y) = (2x + 3x^2y^2 + 5, 2x^3y)$$

3.
$$\mathbf{F}(x,y) = \left(e^x, ye^{-y^2}\right)$$

4.
$$\mathbf{F}(x,y) = (e^{xy}, x^4y^3 + y)$$

5.
$$\mathbf{F}(x,y) = \left(e^x + \frac{y}{1+x^2}, \arctan(x) + (1+y)e^y\right)$$

6.
$$\mathbf{F}(x, y, z) = (yz + y + 1, xz + x + z, xy + y + 1)$$

7.
$$\mathbf{F}(x, y, z) = (2xyz + 3x^2, x^2z + 6z, 6y)$$

8.
$$\mathbf{F}(x,y,z) = (yze^{xy} + 2xz^2, xze^{xy} + 7y^6 + 3y^2z^2, e^{xy} + 2x^2z + (1+2z)e^{2z} + 2y^3z)$$

Let $\mathbf{F}(x,y) = (P(x,y), Q(x,y))$ be a vector field where $P_y = Q_x$ except at the points P_1 , P_2 , and P_3 .

Suppose that
$$\int_{C_1} \mathbf{F} \cdot d\mathbf{X} = 1$$
, $\int_{C_2} \mathbf{F} \cdot d\mathbf{X} = 2$, $\int_{C_2} \mathbf{F} \cdot d\mathbf{X} = 3$,

and $\int_{C_4} \mathbf{F} \cdot d\mathbf{X} = 4$ where $C_1, C_2, \dots C_8$ are pictured to the right.

9.
$$\int_{C_5} \mathbf{F} \cdot d\mathbf{X}$$
 [Answer: 6]

10.
$$\int_{C_c} \mathbf{F} \cdot d\mathbf{X}$$
 [Answer: 3]

11.
$$\int_{C_7} \mathbf{F} \cdot d\mathbf{X}$$
 [Answer: 0]

12.
$$\int_{C_8} \mathbf{F} \cdot d\mathbf{X}$$
 [Answer: 0]

Green's Theorem:

- 13. Let C be the square with vertices (0,0), (1,0), (1,1), and (0,1) (oriented counter-clockwise). Compute the line integral: $\int_C y^2 dx + x^2 dy$ two ways. First, compute the integral directly by parameterizing each side of the square. Then, compute the answer again using Green's Theorem.
- 14. Compute $\int_C \mathbf{F} \cdot d\mathbf{X}$ where $\mathbf{F}(x,y) = (y \ln(x^2 + y^2), 2\arctan(y/x))$ and C is the circle $(x-2)^2 + (y-3)^2 = 1$ oriented counter-clockwise. [Answer: $-\pi$]
- 15. Let C be the boundary of the part of the disk $x^2 + y^2 \le 16$ which lies in the first quadrant (oriented counter-clockwise). Compute $\int_C x^2 y \, dx y^2 x \, dy$. [Answer: -32π]
- 16. Let C be the line segments from (1,0) to (1,1), (1,1) to (0,1), and (0,1) to (0,0). Compute $\int_C \sqrt{1+y^3} \, dx + (x^2+e^{-y^2}) \, dy.$ Hint: Use Green's Theorem to replace C with the line segment from (1,0) to (0,0).

Surface & Flux Integrals:

- 17. Find the centroid of the upper-hemisphere of $x^2 + y^2 + z^2 = 9$. [Answer: (0,0,3/2)]
- 18. Find the centroid of $z = x^2 + y^2$ where $z \le 1$.
- 19. Let $\mathbf{X}(u,v) = (u\cos(v), u\sin(v), v)$ where $0 \le u \le 1$ and $0 \le v \le 2\pi$. Let S_1 be the surface parameterized by \mathbf{X} . Graph S_1 in Maple. Then evaluate $\iint_{S_1} (x, y, z 2y) \cdot d\mathbf{S}$ if S_1 is given the orientation $\mathbf{n} = \frac{\mathbf{X}_u \times \mathbf{X}_v}{|\mathbf{X}_u \times \mathbf{X}_v|}$. [Answer: π^2]
- 20. Let S_1 be the part of the paraboloid $z = 1 x^2 y^2$ which lies above the xy-plane $(z \ge 0)$ and orient S_1 upward. Evaluate $\iint_{S_1} (x, y, z) \cdot d\mathbf{S}$. [Answer: $3\pi/2$]
- 21. Let S_1 be the upper-hemisphere of $x^2 + y^2 + z^2 = 9$ oriented upward. Evalute $\iint_{S_1} (-y, x, -1) \cdot d\mathbf{S}$. [Answer: -9π]
- 22. Let S_1 be the surface of the cylinder bounded by $x^2 + y^2 = 4$, z = 0, and z = 5 oriented outward (include the top and the bottom of the cylinder). Evaluate $\iint_{S_1} (x^3, y^3, 0) \cdot d\mathbf{S}$. If you know the Divergence Theorem, use it to recompute your answer. [Answer: 120π]
- 23. Let S_1 be the part of the plane x + y + z = 1 which lies in the first octant $(x \ge 0, y \ge 0, z \ge 0)$ and oriented **downward**. Evaluate $\iint_{S_1} (xze^y\mathbf{i} xze^y\mathbf{j} + z\mathbf{k}) \cdot d\mathbf{S}$. [Answer: -1/6]
- 24. Let S_1 be the cube with vertices $(\pm 1, \pm 1, \pm 1)$ oriented outward. Evaluate $\iint_{S_1} (x, 2y, 3z) \cdot d\mathbf{S}$. If you know the divergence theorem, recalculate this integral using the theorem. [Answer: 48]

Stokes' Theorem:

- 25. Let S be the lower half of the sphere $x^2 + y^2 + z^2 = 4$ oriented downward with boundary C. Also, let $\mathbf{F}(x, y, z) = (2y z, x + y^2 z, 4y 3x)$. Verify Stokes' Theorem by computing both sides of $\int_C \mathbf{F} \cdot d\mathbf{X} = \iint_S \operatorname{curl}(\mathbf{F}) \cdot d\mathbf{S}.$
- 26. Verify Stoke's theorem for $\mathbf{F}(x, y, z) = (y^2, x, z^2)$ and S_1 the part of the circular paraboloid $z = x^2 + y^2$ which lies below z = 1. Give S_1 the upward orientation.
- 27. Let C be the circle parameterized by $\mathbf{X}(t) = (\cos(t), \sin(t), 0)$ where $0 \le t \le 2\pi$. Evaluate $\int_C (z^2, 2x, -y^3) \cdot d\mathbf{X}$. [Answer: 2π]
- 28. Let C be the rectangular boundary of the part of the plane z=y which lies above $0 \le x \le 1$ and $0 \le y \le 3$. Give C the counter-clockwise orientation when viewed from above. Evaluate $\int_C (x^2, 4xy^3, y^2x) \cdot d\mathbf{X}.$ [Answer: 90]
- 29. Let S_1 be the part of the graph of $z = e^{-(x^2+y^2)}$ which lies above $x^2 + y^2 \le 1$. Orient S_1 upward. Let $\mathbf{F}(x,y,z) = (e^{y+z} 2y)\mathbf{i} + (xe^{y+z} + y)\mathbf{j} + e^{x+y}\mathbf{k}$. Evaluate $\iint_{S_1} \operatorname{curl}(\mathbf{F}) \cdot d\mathbf{S}$. Hint: Use Stokes' theorem to replace S_1 with another surface which shares the same boundary. [Answer: 2π]
- 30. S_1 be the four sides and the top of the cube with vertices $(\pm 1, \pm 1, \pm 1)$ oriented outward. Let $\mathbf{F}(x, y, z) = xyz\mathbf{i} + xy\mathbf{j} + x^2yz\mathbf{k}$. Evaluate $\iint_{S_1} \operatorname{curl}(\mathbf{F}) \cdot d\mathbf{S}$ by using Stokes' theorem to exchange S_1 with an "easier" surface whose boundary is the same as S_1 . [Answer: 0]
- 31. Compute the work done by the force field $\mathbf{F}(x,y,z) = (x^x + z^2, y^y + x^2, z^z + y^2)$ when a particle moves under its influence around the edge of the part of the sphere $x^2 + y^2 + z^2 = 4$ which lies in the 1st octant and is oriented in a counter-clockwise direction when viewed from above. [Answer: 16]
- 32. Let C be the curve of intersection of x+y+z=1 and $x^2+y^2=9$. Orient C counter-clockwise when viewed from above. Evaluate $\int_C (x^2z,xy^2,z^2)\cdot d\mathbf{X}$. [Answer: $81\pi/2$]

The Divergence Theorem:

- 33. Let E be the solid bounded above by $z = 9 x^2 y^2$ and below by z = 0, let S be the boundary of E, and let $\mathbf{F}(x, y, z) = (x, y, z)$. Verify the Divergence Theorem by computing both sides of $\iint_S \mathbf{F} \cdot d\mathbf{S} = \iiint_E \operatorname{div}(\mathbf{F}) \, dV.$
- 34. Let S_1 be the unit sphere $x^2 + y^2 + z^2 = 1$ oriented outward. Evaluate $\iint_{S_1} (z, y, x) \cdot d\mathbf{S}$. [Answer: $4\pi/3$]
- 35. Verify the divergence theorem when $\mathbf{F}(x,y,z)=(xy,yz,zx)$ and E is the cylindrical region bounded by $x^2+y^2=1, z=0,$ and z=1.
- 36. Let S_1 be the boundary of the upper-half of $x^2 + y^2 + z^2 \le 1$ (the upper-half of the unit ball). Orient S outward. Evaluate $\iint_{S_1} (x^3, y^3, z^3) \cdot d\mathbf{S}$. [Answer: $6\pi/5$]
- 37. Let S_1 be the surface of the circular paraboloid bounded by $z = x^2 + y^2$ and z = 1. Orient S_1 outward. Evaluate $\iint_{S_1} (x^2, y^2, z^2) \cdot d\mathbf{S}$. [Answer: $2\pi/3$]
- 38. Let S_1 be the surface of the cylinder bounded by $y^2 + z^2 = 1$, x = -1, and x = 2 (including the front and back) oriented outward. Evaluate $\iint_{S_1} (3xy^2, xe^z, z^3) \cdot d\mathbf{S}$. [Answer: $9\pi/2$]
- 39. Let S_1 be the upper-hemisphere of $x^2 + y^2 + z^2 = 1$ oriented upwards (this is just the upper shell do not include the bottom). Also, let $\mathbf{F}(x,y,z) = (z^2x,y^3/3 + \tan(z),x^2z + y^2)$. Evaluate $\iint_{S_1} \mathbf{F} \cdot d\mathbf{S}$. Hint: use the theorem to exchange S_1 with an "easier" surface. [Answer: $13\pi/20$]
- 40. Let S_1 be the part of the graph of $z = (1-x^2-y^2)e^{1-x^2-3y^2}$ which lies above the xy-plane oriented upward. Also, let $\mathbf{F}(x,y,z) = (e^y \cos(z), \sqrt{x^3+1}\sin(z), x^2+y^2+3)$. Evaluate $\iint_{S_1} \mathbf{F} \cdot d\mathbf{S}$ by using the theorem to exchange S_1 with an "easier" surface. [Answer: $7\pi/2$]
- 41. Prove Green's Formulas: Let f and g be smooth functions and let S be the surface (oriented outward) of a simple solid region E.

$$\iiint_{E} \nabla f \cdot \nabla g + f \operatorname{div}(\nabla g) dV = \iint_{S} f \nabla g \cdot d\mathbf{S}$$
$$\iiint_{E} (f \operatorname{div}(\nabla g) - g \operatorname{div}(\nabla f)) dV = \iint_{S} (f \nabla g - g \nabla f) \cdot d\mathbf{S}$$

Hint: First, prove the following "product" rule: $\operatorname{div}(f \mathbf{F}) = \nabla f \cdot \mathbf{F} + f \operatorname{div}(\mathbf{F})$.