Name:

Be sure to show your work!

$$\operatorname{proj}_{\mathbf{v}}(\mathbf{u}) = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|^{2}} \mathbf{v} \qquad \mathbf{r}''(t) = \left(\frac{\mathbf{r}'(t) \cdot \mathbf{r}''(t)}{|\mathbf{r}'(t)|}\right) \mathbf{T}(t) + \left(\frac{|\mathbf{r}'(t) \times \mathbf{r}''(t)|}{|\mathbf{r}'(t)|}\right) \mathbf{N}(t) \qquad \kappa = \left|\frac{d\mathbf{T}}{ds}\right| = \frac{|\mathbf{T}'(t)|}{|\mathbf{r}'(t)|} = \frac{|\mathbf{r}'(t) \times \mathbf{r}''(t)|}{|\mathbf{r}'(t)|^{3}}$$

$$m = \int_{C} \rho \, ds \qquad (\bar{x}, \bar{y}, \bar{z}) = \frac{1}{m} \left(\int_{C} x \rho \, ds, \int_{C} y \rho \, ds, \int_{C} z \rho \, ds\right) \qquad \kappa = \frac{|f''(x)|}{|\mathbf{r}'(x)|^{3}}$$

$$\kappa = \left| \frac{d\mathbf{T}}{ds} \right| = \frac{|\mathbf{T}'(t)|}{|\mathbf{r}'(t)|} = \frac{|\mathbf{r}'(t) \times \mathbf{r}''(t)|}{|\mathbf{r}'(t)|^3}$$
$$\kappa = \frac{|f''(x)|}{\left(1 + (f'(x))^2\right)^{\frac{3}{2}}}$$

- 1. (14 points) Vector Basics: Let $\mathbf{v} = \langle -1, -3, 1 \rangle$ and $\mathbf{w} = \langle 1, 1, 2 \rangle$.
- (a) Find the vector of length 10 which points in the direction opposite that of \mathbf{v} .

(b) Find the angle between \mathbf{v} and \mathbf{w} (don't worry about evaluating inverse trig. functions).

Is this angle... right, **obtuse** ? (Circle your answer.) acute,

(c) Match each expression with a corresponding statement describing what is being computed...

 $\mathbf{a} \cdot \mathbf{b} = 0$

A) the area of a parallelogram

 $\mathbf{a} \bullet (\mathbf{b} \times \mathbf{c})$

B) the vectors are orthogonal

 $|\mathbf{a} \times \mathbf{b}|$

C) nonsense

 $(\mathbf{a} \bullet \mathbf{b}) \times (\mathbf{b} \bullet \mathbf{c})$

- **D)** \pm the volume of a parallelepiped
- 2. (12 points) Let ℓ_1 be parametrized by $\mathbf{r}_1(t) = \langle 1, 2, 0 \rangle + \langle -1, 3, 1 \rangle t$ and let ℓ_2 be the line which passes through the points P = (-2, 1, -3) and Q = (-1, 3, -1). Determine if ℓ_1 and ℓ_2 are... (circle the correct answer)

the same, parallel (but not the same), intersecting, skew.

3.	(14 points) A few points
(a)	Find the (scalar) equation of the plane through the points $A = (1, 0, -1)$, $B = (3, 2, 0)$, and $C = (2, 3, 1)$.
(b)	Parameterize the line which is perpendicular to the plane $-5x + y + 2z = 13$ and which passes through the point $P = (0, 2, -1)$.
(c)	Is the line found in part (b) orthogonal, parallel, both orthogonal and parallel, or neither orthogonal nor parallel to the plane found in part (a)? Explain.
	plane found in part (a): Explain.
4.	(10 points) Let $y = x^3 + 1$ where $-1 \le x \le 2$. Parameterize the graph of this function. Also, find its curvature.

5. (16 points) Let C be the helix parameterized by $\mathbf{r}(t) = \langle 3\cos(t), 5\sin(t), 4\cos(t) \rangle, -\pi \leq t \leq \pi$.
(a) Compute the \mathbf{TNB} -frame for C .
(b) Find the curvature of C .
(c) Set up (but do not evaluate) the line integral $\int_C (x^2 + z^2)e^y ds$ [Please simplify your answer.]
(d) Circle the correct answer: C Is $/$ Is NoT a planar curve.
6. (10 points) Suppose that a particle has a constant acceleration vector $\mathbf{a}(t) = -4\mathbf{j}$. Its initial velocity vector was $\mathbf{v}_0 = 2\mathbf{i} - \mathbf{j}$ and its initial position was $\mathbf{r}_0 = 100\mathbf{j}$. Find a formula for the position of this particle, $\mathbf{r}(t)$, at time t (assume $\mathbf{r}(t)$ is measured in meters and t in seconds).
What was the particle's initial speed ?

7.	(14 points)	Let C be	parameterized	by $\mathbf{r}(t)$	$= \langle t \ t^3 \ e^{t} \rangle$	where 0 <	$t < 6\pi$
	(TA DOMES	L Det C De	parameterizeu	DV I (U)	$-$ \ ι , ι , ϵ	/ where o >	$\iota \sim 0\pi$.

(a) Compute the curvature of C.

(b) Find the tangential and normal components of acceleration.

$$a_T = \underline{\hspace{1cm}}$$

$$a_N =$$

(c) Set up (but do **not** evaluate) the line integral $\int_C (x^2y+z)\,ds$

8. (10 points) No numbers here. Choose ONE of the following:

- I. Compute and simplify $\frac{d}{dt} \left[\mathbf{r} \bullet (\mathbf{r}' \times \mathbf{r}'') \right]$ where $\mathbf{r}(t)$ is a smooth vector valued function.
- II. It is true that $|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}| |\mathbf{b}|$? Either explain why this always holds or explain what would make it hold or fail.