Name:

Be sure to show your work!

$$\operatorname{proj}_{\mathbf{v}}(\mathbf{u}) = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|^{2}} \mathbf{v} \qquad \mathbf{r}''(t) = \left(\frac{\mathbf{r}'(t) \cdot \mathbf{r}''(t)}{|\mathbf{r}'(t)|}\right) \mathbf{T}(t) + \left(\frac{|\mathbf{r}'(t) \times \mathbf{r}''(t)|}{|\mathbf{r}'(t)|}\right) \mathbf{N}(t) \qquad \kappa = \left|\frac{d\mathbf{T}}{ds}\right| = \frac{|\mathbf{T}'(t)|}{|\mathbf{r}'(t)|} = \frac{|\mathbf{r}'(t) \times \mathbf{r}''(t)|}{|\mathbf{r}'(t)|^{3}}$$

$$m = \int_{C} \rho \, ds \qquad (\bar{x}, \bar{y}, \bar{z}) = \frac{1}{m} \left(\int_{C} x \rho \, ds, \int_{C} y \rho \, ds, \int_{C} z \rho \, ds\right) \qquad \kappa = \frac{|f''(x)|}{|x'(t)|^{3}}$$

$$\kappa = \left| \frac{d\mathbf{T}}{ds} \right| = \frac{|\mathbf{T}'(t)|}{|\mathbf{r}'(t)|} = \frac{|\mathbf{r}'(t) \times \mathbf{r}''(t)|}{|\mathbf{r}'(t)|^3}$$
$$|f''(x)|$$

$$\kappa = \frac{|f''(x)|}{\left(1 + (f'(x))^2\right)^{\frac{3}{2}}}$$

- 1. (20 points) Vector Basics: Let $\mathbf{v} = \langle 1, -3, 2 \rangle$, $\mathbf{w} = \langle -1, -2, 2 \rangle$, and $\mathbf{u} = \langle -2, 1, 3 \rangle$.
- (a) Find the area of a parallelogram spanned by \mathbf{v} and \mathbf{w} .

(b) Compute the volume of the parallelepiped spanned by **u**, **v**, and **w**.

(c) Find the angle between **v** and **w** (don't worry about evaluating inverse trig. functions).

Is this angle... right, **obtuse** ? (Circle your answer.) acute,

(d) Match with the correct response: [One of these answers doesn't occur.]

 $\mathbf{A} \mid \mathbf{a} \text{ and } \mathbf{b} \text{ are normalized},$ |C| a and b are perpendicular, or $\mathbf{B} \mid \mathbf{a} \text{ and } \mathbf{b} \text{ are parallel},$ $|\mathbf{D}|$ this is always true.

 $\mathbf{a} \bullet (\mathbf{a} \times \mathbf{b}) = 0$

$$\mathbf{a} \bullet \mathbf{b} = 0$$

(e) The vectors **a** and **b** are shown to the right. They are based at the point X. Sketch the vector $2\mathbf{a} - \mathbf{b}$ based at the point P and sketch the vector $-\mathbf{a} + \mathbf{b}$ based at the point Q.

2. (10 points) Let ℓ_1 be parameter $P = (3, 1, 2)$ and $Q = (3, 0, 4)$. Det	netrized by $\mathbf{r}_1(t) = \langle 1+2t, 2-2t, 4t \rangle$ ermine if ℓ_1 and ℓ_2 are (circle the	and let ℓ_2 be the line e correct answer)	which passes through the points
	parallel (but not the same),		or skew.
3. (12 points) Plane old geom	etry.		
(a) Find a (scalar) equation for the	e plane containing the points $A = 0$	(2,1,-1), B = (1,3,1),	and $C = (1, 2, 2)$.
(b) Consider the line parameterize	d by $\mathbf{r}(t) = \langle 2 + 6t, 1 - 2t, 3 - 2t \rangle$	and the plane $-3x + y$	+z=8. Are the line and plane
parallel, perpendicular, both, o	or neither?	Promis out 9	, o. 1110 0110 01110 p.m.
4. (9 points) Recall that the a	acceleration due to gravity is $\mathbf{a}(t)$:	= -32 k . Suppose that	a ball is thrown starting at an
initial position $\mathbf{r}_0 = \mathbf{i} - 5\mathbf{k}$ with an	initial velocity of $\mathbf{v}_0 = \mathbf{i} + 2\mathbf{j} + \mathbf{k}$. ments are made in feet and seconds	Find the position func	tion $\mathbf{r}(t)$ for this ball at time t .
i.			

The ball's initial speed is _____ feet per second.

5.	(15 poin	ts) Consider the curve C	parameterized by $\mathbf{r}(t)$	$(t) = \langle e^{-t}, 3t, t \rangle$	$^{4}\rangle, -1 \le t \le 5.$

(a) Find a parameterization, $\ell(t)$, for the line tangent to C at t=0.

(b) Set up the line integral $\int_C x \cos(yz^2) ds$. [Do not try to evaluate this integral! It will only end in tears.]

(c) Compute the curvature of C.

6. (9 points) Let C be the ellipse $\frac{x^2}{16} + \frac{(y-5)^2}{9} = 1$. Parameterize C and set up an integral which computes its arc length.

[Again, do **not** try to evaluate this integral! It will only end in tears.]

7. (14 points) Consider the curve parameterized by $\mathbf{r}(t) = \langle 3t, 4\cos(t), 4\sin(t) \rangle$.
(a) Find the TNB-frame for $\mathbf{r}(t)$.
(b) Does this curve lie in a plane? Why or why not?
(c) Find the curvature of this curve.
8. (11 points) Choose ONE of the following:
I. Let a and b be unit vectors. Show that $ \mathbf{a} \times \mathbf{b} ^2 + (\mathbf{a} \cdot \mathbf{b})^2 = 1$.
[Hint: Use fundamental geometric identities for the dot and cross products. Don't try to do this with components.]
II. Suppose that $ \mathbf{r}(t) = c$ (c is some constant). Show that $\mathbf{r}(t)$ and $\mathbf{r}'(t)$ are orthogonal.