DIFFERENTIAL GEOMETRY & LINE INTEGRALS: NOTATION & FORMULAS REVIEW

- Let C be an oriented curve parameterized by $\mathbf{r}(t) = \langle x(t), y(t), z(t) \rangle$ where $a \leq t \leq b$.
- -C denotes the curve C with its orientation (i.e., direction) reversed. We let $C_1 + C_2$ denote curve C_1 and curve C_2 joined together. Such curves don't have to be connected. More generally, $-3C_1 + 5C_2$ is the curves where we travel along C_1 backwards 3 times and then run along C_2 a total of 5 times.
- Define $s(t) = \int_{a}^{t} |\mathbf{r}'(u)| \, du$. This is the *arc length* function.

Note: s(a) = 0, $s(b) = \int_{a}^{b} |\mathbf{r}'(t)| dt$ is the total arc length of *C*, and by the second part of the

fundamental theorem of calculus $\frac{ds}{dt} = |\mathbf{r}'(t)|$ so that we define $ds = |\mathbf{r}'(t)| dt$ to be the arc length element used in the definition of line integrals with respect to arc length.

• $\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{|\mathbf{r}'(t)|}$ is the unit Tangent, $\mathbf{N}(t) = \frac{\mathbf{T}'(t)}{|\mathbf{T}'(t)|}$ is the unit Normal, and $\mathbf{B}(t) = \mathbf{T}(t) \times \mathbf{N}(t)$

is the *Binormal*. For every t (where these are defined), they are mutually perpendicular (i.e., $\mathbf{T} \bullet \mathbf{N} = 0$, $\mathbf{N} \bullet \mathbf{B} = 0$, and $\mathbf{B} \bullet \mathbf{T} = 0$) unit vectors (i.e., $|\mathbf{T}| = |\mathbf{N}| = |\mathbf{B}| = 1$). This TNB-frame forms a right handed system – much like a variable **ijk** triple. In particular, $\mathbf{T} \times \mathbf{N} = \mathbf{B}$, $\mathbf{N} \times \mathbf{B} = \mathbf{T}$, and $\mathbf{B} \times \mathbf{T} = \mathbf{N}$. We can think of \mathbf{T} as pointing forward, \mathbf{N} pointing left, and \mathbf{B} pointing up. Just like decomposing a vector into **i**, **j**, and **k**-components, every vector can be decomposed into \mathbf{T} , \mathbf{N} , and \mathbf{B} -components.

• Curvature is given by $\kappa = \left| \frac{d\mathbf{T}}{ds} \right| = \frac{|\mathbf{T}'(t)|}{|\mathbf{r}'(t)|} = \frac{|\mathbf{r}'(t) \times \mathbf{r}''(t)|}{|\mathbf{r}'(t)|^3}$. The first formula shows that κ depends only on the shape of the curve (not the particular parameterization). The second formula is easy to use when the TNB-frame has already been computed. Generally, the third formula is easiest to apply if we are computing curvature from scratch.

Curvature measures how bent a curve is. If C is a circle of radius R, we have $\left[\kappa = \frac{1}{R}\right]$ (larger circles are less bent). We also have $\kappa(t) = 0$ for all $t \iff C$ is a line or a line segment.

Note: Even when $\mathbf{r}(t)$ is many times differentiable, its TNB-frame may not exist (at least at certain points). Specifically, if $\mathbf{T}'(t_0) = \mathbf{0}$, we cannot normalize $\mathbf{T}'(t_0) = \mathbf{0}$ and so the unit normal and binormal will not exist for such a $t = t_0$. In fact, keeping in mind $\kappa = |\mathbf{T}'|/|\mathbf{r}'|$, we have that a sufficiently differential curve will have a well-defined TNB-frame at $t = t_0$ if and only if $\kappa(t_0) \neq 0$.

• For a particular $t = t_0$, the plane which is parallel to $\mathbf{T}(t_0)$ and $\mathbf{N}(t_0)$ (and thus perpendicular to $\mathbf{B}(t_0)$) and through the point $\mathbf{r}(t_0)$ is called the *osculating plane* at $\mathbf{r}(t_0)$. Such a plane has vector formula, $\mathbf{B}(t_0) \bullet (\langle x, y, z \rangle - \mathbf{r}(t_0)) = 0$. [osculating plane = kissing plane]

We can paramterize the line tangent to C at $\mathbf{r}(t_0)$ by $\vec{\ell}(t) = \mathbf{r}(t_0) + \mathbf{r}'(t_0)t$ or $\vec{\ell}(t) = \mathbf{r}(t_0) + \mathbf{T}(t_0)t$. The circular version of the tangent line is called a osculating circle or circle of curvature. The osculating circle at $\mathbf{r}(t_0)$ is the circle lying in the osculating plane at $\mathbf{r}(t_0)$ whose curvature matches the curvature of C at that point and whose center lies in the unit normal direction from $\mathbf{r}(t_0)$. Specifically, this circle can be parameterized by...

$$\mathbf{c}(t) = \underbrace{\mathbf{r}(t_0) + \frac{1}{\kappa(t_0)} \mathbf{N}(t_0)}_{\text{the circle's center}} + \frac{1}{\kappa(t_0)} \cos(t) \mathbf{T}(t_0) + \frac{1}{\kappa(t_0)} \sin(t) \mathbf{N}(t_0)$$

• If we think of $\mathbf{r}(t)$ as the position of a particle, then $\mathbf{v}(t) = \mathbf{r}'(t)$ is its velocity, $|\mathbf{r}'(t)|$ is its speed, and $\mathbf{a}(t) = \mathbf{r}''(t)$ is its acceleration. Decomposing acceleration into its TNB-frames components we have $\mathbf{r}''(t) = a_T(t)\mathbf{T}(t) + a_N(t)\mathbf{N}(t) + 0\mathbf{B}(t)$ where $a_T(t)$ and $a_N(t)$ are the tangential and normal components of acceleration. Notice that the binormal component of acceleration is always identically 0 (this has important physical consequences).

Note: We have direct formula for these components. $a_T(t) = \frac{\mathbf{r}'(t) \bullet \mathbf{r}''(t)}{|\mathbf{r}'(t)|}$ and $a_N(t) = \frac{|\mathbf{r}'(t) \times \mathbf{r}''(t)|}{|\mathbf{r}'(t)|}$. If you have already computed curvature using the cross product formula, you've nearly computed these components as well.

• Using $\kappa = |\mathbf{T}'|/|\mathbf{r}'|$ and $\mathbf{N} = \mathbf{T}'/|\mathbf{T}'|$, is immediately follows that $\mathbf{T}'(t) = \kappa(t)|\mathbf{r}'(t)|\mathbf{N}(t)$. It turns out that $\mathbf{B}'(t)$ is also parallel to $\mathbf{N}(t)$. We can define a function $\tau(t)$, called the *torsion* of C, by requiring $\mathbf{B}'(t) = -\tau(t)|\mathbf{r}'(t)|\mathbf{N}(t)|$. It can also be shown that $\mathbf{N}'(t) = -\kappa(t)|\mathbf{r}'(t)|\mathbf{T}(t) + \tau(t)|\mathbf{r}'(t)|\mathbf{B}(t)$. These formulas for the derivatives of the \mathbf{T} , \mathbf{N} , and \mathbf{B} are called the Frenet-Serret formulas.

Torsion is a measurement of how the binormal changes. Since the binormal determines how the osculating plane is tilted, if $\mathbf{B}'(t) = \mathbf{0}$, then $\mathbf{B}(t)$ is constant and thus the osculating plane is constant as well. Since points on our curve near $\mathbf{r}(t_0)$ nearly lie in the osculating plane at $\mathbf{r}(t_0)$, we can only have a constant osculating plane when our curve is planar. Therefore, $\tau(t) = 0$ for all $t \iff \mathbf{B}'(t) = \mathbf{0} \iff \mathbf{B}(t)$ is constant $\iff C$ is a planar curve.

Much like curvature, there is a relatively simple formula for torsion: $\tau(t) = \frac{(\mathbf{r}'(t) \times \mathbf{r}''(t)) \bullet \mathbf{r}'''(t)}{|\mathbf{r}'(t) \times \mathbf{r}''(t)|^2}.$

• Line integrals with respect to arc length (i.e., of scalar valued functions) compute net area of a sheet under a surface (or hyper-surface): $\int_C f(x, y, z) \, ds = \int_a^b f(\mathbf{r}(t)) |\mathbf{r}'(t)| \, dt$. Specifically, we let $ds = |\mathbf{r}'(t)| \, dt = \sqrt{(x'(t))^2 + (y'(t))^2 + (z'(t))^2} \, dt$, x = x(t), y = y(t), and z = z(t).

Note: The value of $\int_C f(x, y, z) ds$ is independent of the choice of paramterization for C. In fact, it does not even depend on the orientation of C: $\int_{-C} f(x, y, z) ds = \int_C f(x, y, z) ds$.

Just as
$$\int_{a}^{b} 1 \, dx = b - a$$
 is the length of the interval $I = [a, b]$, we have $\int_{C} 1 \, ds = \text{Arc Length of } C$

Center of mass

ds

Suppose we have a wire bent in the shape of the curve C and suppose this wire has density $\delta(x, y, z)$ at each point (x, y, z) along the curve. Then if we focus on a little segment of the wire where the density is roughly constant, the mass of the segment of wire will be approximately $\delta(x_0, y_0, z_0)\Delta s$ where Δs is the length of this piece of the wire. So if we add up $\Sigma\delta\Delta s$ we should get the total mass of the wire (approximately anyway). Translating to the world of integrals we have...

- The total mass of the wire is $m = \int_C \delta(x, y, z) \, ds$
- Let $M_{yz} = M_{x=0} = \int_C x \,\delta(x, y, z) \,ds$. We call M_{yz} the moment about the yz-plane. This is a weighted sum of x-coordinates. Likewise, $M_{xz} = M_{y=0} = \int_C y \,\delta(x, y, z) \,ds$ and $M_{xy} = M_{x=0} =$

 $\int_C z \,\delta(x, y, z) \,ds \text{ are moments about the } xz \text{ and } xy \text{-planes respectively. These compute weighted}$

- sums of y and z coordinates.
- Finally, $(\bar{x}, \bar{y}, \bar{z}) = \left(\frac{M_{yz}}{m}, \frac{M_{xz}}{m}, \frac{M_{xy}}{m}\right)$ is the *center of mass* of *C* with density function δ . The coordinates of the center of mass are weighted averages of x, y, and z coordinates on the curve.
- If $\delta(x, y, z) = c = \text{constant} \neq 0$, then δ will cancel out of the computation of the center of mass (in such a case we can just take $\delta = 1$ in the formulas). In the case of a constant density function, we call the center of mass $(\bar{x}, \bar{y}, \bar{z})$ the *centroid* of C. This is a geometric center of our curve.

Example: Let C be the helix parameterized by $\mathbf{r}(t) = \langle \cos(t), \sin(t), \sqrt{3}t \rangle$ for $0 \le t \le 2\pi$. We will find the centroid of C (i.e., let $\delta = 1$).

First,
$$\mathbf{r}'(t) = \langle -\sin(t), \cos(t), \sqrt{3} \rangle$$
 so $|\mathbf{r}'(t)| = \sqrt{(-\sin(t))^2 + (\cos(t))^2 + (\sqrt{3})^2} = \sqrt{4} = 2$. Thus $= 2 dt$. The mass (= arc length) of C is $m = \int_C 1 ds = \int_0^{2\pi} 2 dt = 4\pi$

$$\bar{x} = \frac{1}{m} \int_C x \, ds = \frac{1}{4\pi} \int_0^{2\pi} \cos(t) 2 \, dt = 0 \qquad \bar{y} = \frac{1}{m} \int_C y \, ds = \frac{1}{4\pi} \int_0^{2\pi} \sin(t) 2 \, dt = 0$$
$$\bar{z} = \frac{1}{m} \int_C z \, ds = \frac{1}{4\pi} \int_0^{2\pi} \sqrt{3}t 2 \, dt = \frac{\sqrt{3}}{4\pi} \int_0^{2\pi} 2t \, dt = \frac{\sqrt{3}}{4\pi} t^2 \Big|_0^{2\pi} = \frac{\sqrt{3}}{4\pi} (2\pi)^2 - 0 = \pi\sqrt{3} \approx 5.4414$$

Notice the helix's z-coordinates range from z = 0 to $z = \sqrt{3} \cdot 2\pi$ so \bar{z} is exactly half way between 0 and $\sqrt{3} \cdot 2\pi$ (looking at a picture of this helix should convince you that this is the right answer). **Answer:** $(\bar{x}, \bar{y}, \bar{z}) = (0, 0, \pi\sqrt{3})$

SUPPLEMENTAL PROBLEMS:

- 1. $\int_C 3x^2yz \, ds$ where *C* is the curve parameterized by $\mathbf{r}(t) = \left\langle t, t^2, \frac{2}{3}t^3 \right\rangle$ and $0 \le t \le 1$.
- 2. $\int_C xy^4 ds$ where C is the right half of the circle centered at the origin of radius 2.
- 3. $\int_C x^2 z \, ds$ where C is the line segment from (0, 6, -1) to (4, 1, 5).
- 4. $\int_C \frac{x}{1+y^2} ds$ where C is the line segment x = 1+2t, y = t where $0 \le t \le 1$.
- 5. $\int_C \frac{e^{-z}}{x^2 + y^2} ds \text{ where } C \text{ is the helix } \mathbf{r}(t) = \langle 2\cos(t), 2\sin(t), t \rangle \text{ and } 0 \le t \le 2\pi.$
- 6. Find the centroid of the helix C param. by $\mathbf{r}(t) = \langle 4\sin(t), 3t, 4\cos(t) \rangle$ where $-2\pi \leq t \leq 4\pi$.
- 7. Find the centroid of the helix C param. by $\mathbf{r}(t) = \langle 2\sin(t), 2\cos(t), 3t \rangle$ where $0 \le t \le \pi$.
- 8. Find the centroid of the right half of the circle $x^2 + y^2 = 9$.
- 9. Find the centroid of the part of the circle $x^2 + y^2 = 25$ in the first quadrant.
- 10. Find the centroid of the curve C: the upper-half of the unit circle plus the x-axis from -1 to 1. *Hint:* Use geometry and symmetry to compute 2 of the 3 line integrals.

Answers:

1.
$$ds = 2t^2 + 1 dt \int_0^1 (4t^9 + 2t^7) dt = \left\lfloor \frac{13}{20} \right\rfloor$$

2. $\mathbf{r}(t) = \langle 2\cos(t), 2\sin(t) \rangle, -\pi/2 \le t \le \pi/2, ds = 2 dt$
3. $\mathbf{r}(t) = \langle 0, 6, -1 \rangle + \langle 4, -5, 6 \rangle t, 0 \le t \le 1, ds = \sqrt{77} dt$
4. $ds = \sqrt{5} dt \int_0^1 \frac{2t+1}{t^2+1} \sqrt{5} dt = \left\lfloor \sqrt{5}\ln(2) + \frac{\sqrt{5}}{4} \pi \right\rfloor$
5. $ds = \sqrt{5} dt \int_0^{2\pi} \frac{\sqrt{5}}{4} e^{-t} dt = \left\lfloor \frac{\sqrt{5}}{4} (1 - e^{-2\pi}) \right\rfloor$
6. $ds = 5 dt, m = 30\pi$ $\left[(\bar{x}, \bar{y}, \bar{z}) = (0, 3\pi, 0) \right]$
7. $ds = \sqrt{13} dt, m = \sqrt{13\pi}$ $\left[(\bar{x}, \bar{y}, \bar{z}) = (4/\pi, 0, 3\pi/2) \right]$
8. $ds = 3 dt, m = 5\pi/2$ $\left[(\bar{x}, \bar{y}) = (10/\pi, 10/\pi) \right]$
10. $m = \pi + 2$ (half-circle plus line segment), symmetry: $\bar{x} = 0, M_x = \int_0^{\pi} \sin(t) dt + \int_{-1}^1 0 dt = \left[(\bar{x}, \bar{y}) = (0, 2/(2 + \pi)) \right]$

2