
Differential Geometry & Line Integrals:

Notation & Formulas Review

• Let C be an oriented curve parameterized by r(t) = 〈x(t), y(t), z(t)〉 where a ≤ t ≤ b.

• −C denotes the curve C with its orientation (i.e., direction) reversed. We let C1 + C2 denote
curve C1 and curve C2 joined together. Such curves don’t have to be connected. More generally,
−3C1 + 5C2 is the curves where we travel along C1 backwards 3 times and then run along C2 a
total of 5 times.

• Define s(t) =

∫ t

a

|r′(u)| du. This is the arc length function.

Note: s(a) = 0, s(b) =

∫ b

a

|r′(t)| dt is the total arc length of C, and by the second part of the

fundamental theorem of calculus
ds

dt
= |r′(t)| so that we define ds = |r′(t)| dt to be the arc length

element used in the definition of line integrals with respect to arc length.

• T(t) =
r′(t)

|r′(t)|
is the unit Tangent, N(t) =

T′(t)

|T′(t)|
is the unit Normal, and B(t) = T(t)×N(t)

is the Binormal. For every t (where these are defined), they are mutually perpendicular (i.e.,
T •N = 0, N •B = 0, and B •T = 0) unit vectors (i.e., |T| = |N| = |B| = 1). This TNB-
frame forms a right handed system – much like a variable ijk triple. In particular, T×N = B,
N × B = T, and B × T = N. We can think of T as pointing forward, N pointing left, and B
pointing up. Just like decomposing a vector into i, j, and k-components, every vector can be
decomposed into T, N, and B-components.

• Curvature is given by κ =

∣∣∣∣dTds
∣∣∣∣ =

|T′(t)|
|r′(t)|

=
|r′(t)× r′′(t)|
|r′(t)|3

. The first formula shows that

κ depends only on the shape of the curve (not the particular parameterization). The second
formula is easy to use when the TNB-frame has already been computed. Generally, the third
formula is easiest to apply if we are computing curvature from scratch.

Curvature measures how bent a curve is. If C is a circle of radius R, we have κ =
1

R
(larger

circles are less bent). We also have κ(t) = 0 for all t ⇐⇒ C is a line or a line segment .

Note: Even when r(t) is many times differentiable, its TNB-frame may not exist (at least at
certain points). Specifically, if T′(t0) = 0, we cannot normalize T′(t0) = 0 and so the unit
normal and binormal will not exist for such a t = t0. In fact, keeping in mind κ = |T′|/|r′|, we
have that a sufficiently differential curve will have a well-defined TNB-frame at t = t0 if and only
if κ(t0) 6= 0.

• For a particular t = t0, the plane which is parallel to T(t0) and N(t0) (and thus perpendicular to
B(t0)) and through the point r(t0) is called the osculating plane at r(t0). Such a plane has vector
formula, B(t0) • (〈x, y, z〉 − r(t0)) = 0. [osculating plane = kissing plane]

We can paramterize the line tangent to C at r(t0) by ~̀(t) = r(t0)+r′(t0)t or ~̀(t) = r(t0)+T(t0)t.
The circular version of the tangent line is called a osculating circle or circle of curvature. The
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osculating circle at r(t0) is the circle lying in the osculating plane at r(t0) whose curvature matches
the curvature of C at that point and whose center lies in the unit normal direction from r(t0).
Specifically, this circle can be parameterized by. . .

c(t) = r(t0) +
1

κ(t0)
N(t0)︸ ︷︷ ︸

the circle’s center

+
1

κ(t0)
cos(t)T(t0) +

1

κ(t0)
sin(t)N(t0)

• If we think of r(t) as the position of a particle, then v(t) = r′(t) is its velocity, |r′(t)| is its speed,
and a(t) = r′′(t) is its acceleration. Decomposing acceleration into its TNB-frames components

we have r′′(t) = aT (t)T(t) + aN(t)N(t) + 0B(t) where aT (t) and aN(t) are the tangential and

normal components of acceleration. Notice that the binormal component of acceleration is always
identically 0 (this has important physical consequences).

Note: We have direct formula for these components. aT (t) =
r′(t) • r′′(t)
|r′(t)|

and aN(t) =
|r′(t)× r′′(t)|
|r′(t)|

.

If you have already computed curvature using the cross product formula, you’ve nearly computed
these components as well.

• Using κ = |T′|/|r′| and N = T′/|T′|, is immediately follows that T′(t) = κ(t)|r′(t)|N(t). It
turns out that B′(t) is also parallel to N(t). We can define a function τ(t), called the torsion of

C, by requiring B′(t) = −τ(t)|r′(t)|N(t) . It can also be shown that N′(t) = −κ(t)|r′(t)|T(t) +

τ(t)|r′(t)|B(t). These formulas for the derivatives of the T, N, and B are called the Frenet-Serret
formulas.

Torsion is a measurement of how the binormal changes. Since the binormal determines how the
osculating plane is tilted, if B′(t) = 0, then B(t) is constant and thus the osculating plane
is constant as well. Since points on our curve near r(t0) nearly lie in the osculating plane
at r(t0), we can only have a constant osculating plane when our curve is planar. Therefore,

τ(t) = 0 for all t ⇐⇒ B′(t) = 0 ⇐⇒ B(t) is constant ⇐⇒ C is a planar curve .

Much like curvature, there is a relatively simple formula for torsion: τ(t) =
(r′(t)× r′′(t)) • r′′′(t)
|r′(t)× r′′(t)|2

.

• Line integrals with respect to arc length (i.e., of scalar valued functions) compute net area of a

sheet under a surface (or hyper-surface):

∫
C

f(x, y, z) ds =

∫ b

a

f(r(t))|r′(t)| dt . Specifically, we

let ds = |r′(t)| dt =
√

(x′(t))2 + (y′(t))2 + (z′(t))2 dt, x = x(t), y = y(t), and z = z(t).

Note: The value of
∫
C
f(x, y, z) ds is independent of the choice of paramterization for C. In fact,

it does not even depend on the orientation of C:
∫
−C f(x, y, z) ds =

∫
C
f(x, y, z) ds.

Just as
∫ b
a

1 dx = b−a is the length of the interval I = [a, b], we have

∫
C

1 ds = Arc Length of C .
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Center of mass
Suppose we have a wire bent in the shape of the curve C and suppose this wire has density δ(x, y, z) at
each point (x, y, z) along the curve. Then if we focus on a little segment of the wire where the density
is roughly constant, the mass of the segment of wire will be approximately δ(x0, y0, z0)∆s where ∆s is
the length of this piece of the wire. So if we add up Σδ∆s we should get the total mass of the wire
(approximately anyway). Translating to the world of integrals we have. . .

• The total mass of the wire is m =

∫
C

δ(x, y, z) ds

• Let Myz = Mx=0 =

∫
C

x δ(x, y, z) ds. We call Myz the moment about the yz-plane. This is a

weighted sum of x-coordinates. Likewise, Mxz = My=0 =

∫
C

y δ(x, y, z) ds and Mxy = Mx=0 =∫
C

z δ(x, y, z) ds are moments about the xz- and xy-planes respectively. These compute weighted

sums of y and z coordinates.

• Finally, (x̄, ȳ, z̄) =

(
Myz

m
,
Mxz

m
,
Mxy

m

)
is the center of mass of C with density function δ. The

coordinates of the center of mass are weighted averages of x, y, and z coordinates on the curve.

• If δ(x, y, z) = c = constant 6= 0, then δ will cancel out of the computation of the center of mass
(in such a case we can just take δ = 1 in the formulas). In the case of a constant density function,
we call the center of mass (x̄, ȳ, z̄) the centroid of C. This is a geometric center of our curve.

Example: Let C be the helix parameterized by r(t) = 〈cos(t), sin(t),
√

3t〉 for 0 ≤ t ≤ 2π. We will
find the centroid of C (i.e., let δ = 1).

First, r′(t) = 〈− sin(t), cos(t),
√

3〉 so |r′(t)| =
√

(− sin(t))2 + (cos(t))2 + (
√

3)2 =
√

4 = 2. Thus

ds = 2 dt. The mass (= arc length) of C is m =

∫
C

1 ds =

∫ 2π

0

2 dt = 4π

x̄ =
1

m

∫
C

x ds =
1

4π

∫ 2π

0

cos(t)2 dt = 0 ȳ =
1

m

∫
C

y ds =
1

4π

∫ 2π

0

sin(t)2 dt = 0

z̄ =
1

m

∫
C

z ds =
1

4π

∫ 2π

0

√
3t2 dt =

√
3

4π

∫ 2π

0

2t dt =

√
3

4π
t2
∣∣∣2π
0

=

√
3

4π
(2π)2 − 0 = π

√
3 ≈ 5.4414

Notice the helix’s z-coordinates range from z = 0 to z =
√

3 · 2π so z̄ is exactly half way between 0 and√
3 · 2π (looking at a picture of this helix should convince you that this is the right answer).

Answer: (x̄, ȳ, z̄) = (0, 0, π
√

3)

(0, 0, π
√

3)

r(0)

r(π/2)

r(π)

r(3π/2)

r(2π)

x y

z
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Supplemental Problems:

1.

∫
C

3x2yz ds where C is the curve parameterized by r(t) =

〈
t, t2,

2

3
t3
〉

and 0 ≤ t ≤ 1.

2.

∫
C

xy4 ds where C is the right half of the circle centered at the origin of radius 2.

3.

∫
C

x2z ds where C is the line segment from (0, 6,−1) to (4, 1, 5).

4.

∫
C

x

1 + y2
ds where C is the line segment x = 1 + 2t, y = t where 0 ≤ t ≤ 1.

5.

∫
C

e−z

x2 + y2
ds where C is the helix r(t) = 〈2 cos(t), 2 sin(t), t〉 and 0 ≤ t ≤ 2π.

6. Find the centroid of the helix C param. by r(t) = 〈4 sin(t), 3t, 4 cos(t)〉 where −2π ≤ t ≤ 4π.

7. Find the centroid of the helix C param. by r(t) = 〈2 sin(t), 2 cos(t), 3t〉 where 0 ≤ t ≤ π.

8. Find the centroid of the right half of the circle x2 + y2 = 9.

9. Find the centroid of the part of the circle x2 + y2 = 25 in the first quadrant.

10. Find the centroid of the curve C: the upper-half of the unit circle plus the x-axis from −1 to 1.
Hint: Use geometry and symmetry to compute 2 of the 3 line integrals.

Answers:

1. ds = 2t2 + 1 dt

∫ 1

0

(4t9 + 2t7) dt =
13

20

2. r(t) = 〈2 cos(t), 2 sin(t)〉, −π/2 ≤ t ≤ π/2, ds = 2 dt

∫ π/2

−π/2
64 sin4(t) cos(t) dt =

128

5

3. r(t) = 〈0, 6,−1〉+ 〈4,−5, 6〉t, 0 ≤ t ≤ 1, ds =
√

77 dt

∫ 1

0

16t2(6t− 1)
√

77 dt =
56
√

77

3

4. ds =
√

5 dt

∫ 1

0

2t+ 1

t2 + 1

√
5 dt =

√
5 ln(2) +

√
5

4
π

5. ds =
√

5 dt

∫ 2π

0

√
5

4
e−t dt =

√
5

4
(1− e−2π)

6. ds = 5 dt, m = 30π (x̄, ȳ, z̄) = (0, 3π, 0)

7. ds =
√

13 dt, m =
√

13π (x̄, ȳ, z̄) = (4/π, 0, 3π/2)

8. ds = 3 dt, m = 3π (x̄, ȳ) = (6/π, 0)

9. ds = 5 dt, m = 5π/2 (x̄, ȳ) = (10/π, 10/π)

10. m = π + 2 (half-circle plus line segment), symmetry: x̄ = 0, Mx =
∫ π
0

sin(t) dt +
∫ 1

−1 0 dt = 2

(x̄, ȳ) = (0, 2/(2 + π))
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