A Summary of our Big Theorems

Note: We make a blanket assumption that regions have piecewise smooth boundaries and all functions and/or components of vectors fields are sufficiently continuously differentiable on appropriate open sets. In other words, all of the objects involved are reasonably *nice*.

Fundamental Theorem of Calculus Let I = [a, b] then the boundary of this interval is $\partial I = \{a, b\}$ where we are leaving a so it is negatively oriented and we are entering b so it is positively oriented.

Fundamental Theorem of Line Integrals Let C be a curve whose endpoints are $\partial C = \{A, B\}$ where we are leaving A so it is negatively oriented and we are entering B so it is positively oriented. Thus...

Green's Theorem(s)

Recall that the boundary of R (i.e., ∂R) is oriented so that someone walking on top of R along the edge always has R to their left.

 ∂S_1

Work Version:
$$\iint_{R} (N_x - M_y) \, dA = \int_{\partial R} M \, dx + N \, dy$$

Flux Version:
$$\iint_{R} (M_x + N_y) \, dA = \int_{\partial R} M \, dy - N \, dx$$

Stokes' Theorem Again, recall that the boundary of S_1 (i.e., ∂S_1) is oriented so that someone walking along edge on top of S_1 will always have S_1 to their left.

$$\iint_{S_1} (\nabla \times \mathbf{F}) \bullet \mathbf{n} \, d\sigma = \int_{\partial S_1} \mathbf{F} \bullet d\mathbf{r}$$

Divergence Theorem Let E be a solid region whose boundary (surface) ∂E is oriented outward (i.e.,

$$\iiint_E \nabla \bullet \mathbf{F} \, dV = \iint_{\partial E} \mathbf{F} \bullet \mathbf{n} \, d\sigma$$

Generalized Stokes' Theorem When M is an *n*-dimensional oriented manifold with boundary ∂M (which is an (n-1)-dimensional manifold with orientation induced from M) and ω is a differential (n-1)-form,

then...
$$\int_{M} d\omega = \int_{\partial M} \omega$$

away from E).