
Math 2130 Verifying Stokes Example

Consider the upper hemisphere S1: x2 + y2 + z2 = 9, z ≥ 0 oriented upward. Also, let F(x, y, z) = 〈z, x, x2 + y2 + z2〉.

We want to show:

∫∫
S1

(∇× F) •n dσ =

∫
∂S1

F • dr
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I. The boundary of S1 (i.e., ∂S1) is the circle x2 + y2 = 9 and z = 0 (i.e., the
intersection of the hemisphere with the xy-plane). Considering the orientation for
our surface, the orientation of this circle is counter-clockwise (consider someone
walking near the edge on top of S1 trying to keep the surface to their left).

∂S1

x

y We can parameterize the circle as follows:
∂S1: r(t) = 〈3 cos(t), 3 sin(t), 0〉 where 0 ≤ t ≤ 2π. This
is properly oriented since our standard parameterization
goes counter-clockwise (∂S1 should be counter-clockwise
oriented).

Thus r′(t) = 〈−3 sin(t), 3 cos(t), 0〉 and so

∫
∂S1

F • dr =

∫ 2π

0

〈0, 3 cos(t), 9〉 • 〈−3 sin(t), 3 cos(t), 0〉 dt

since (from our parameterization r(t)) we have z(t) = 0, x(t) = 3 cos(t), and x(t)2 +y(t)2 +z(t)2 =
9 + 0 = 9.

Simplifying, we find that

∫
∂S1

F • dr =

∫ 2π

0

9 cos2(t) dt =

∫ 2π

0

9
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(
1 + cos(2t)

)
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II. First, we will compute the curl of our vector field: ∇× F =

∣∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

z x x2 + y2 + z2

∣∣∣∣∣∣∣ = 〈2y − 0,−(2x− 1), 1− 0〉.

Thus ∇× F = 〈2y, 1− 2x, 1〉.
Next, using spherical coordinates, see that our hemisphere is ρ2 = 9 (i.e., ρ = 3) with 0 ≤ θ ≤ 2π and 0 ≤ ϕ ≤ π/2 (since

z ≥ 0). Thus we get the parameterization for S1: r(ϕ, θ) = 〈3 cos(θ) sin(ϕ), 3 sin(θ) sin(ϕ), 3 cos(ϕ)〉. We then need to find
the “derivative” of our parameterization:

rϕ × rθ =

∣∣∣∣∣∣∣
i j k

rϕ

rθ

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
i j k

3 cos(θ) cos(ϕ) 3 sin(θ) cos(ϕ) −3 sin(ϕ)

−3 sin(θ) sin(ϕ) 3 cos(θ) sin(ϕ) 0

∣∣∣∣∣∣∣ = 〈9 cos(θ) sin2(ϕ), 9 sin(θ) sin2(ϕ), 9 sin(ϕ) cos(ϕ)〉

Note that sin(ϕ) and cos(ϕ) are non-negative when 0 ≤ ϕ ≤ π/2, so the k-component of rϕ×rθ is non-negative. This means

that our “derivative” matches the required upward orientation. Also, recall that n dσ = ± rϕ×rθ
|rϕ×rθ| |rϕ× rθ| dA = ±rϕ× rθ dA

(we keep the +). Plugging in our parameterization in we get (∇× F)(r(ϕ, θ)) = 〈2 · 3 sin(θ) sin(ϕ), 1− 2 · 3 cos(θ) sin(ϕ), 1〉
since x(ϕ, θ) = 3 cos(θ) sin(ϕ) and y(ϕ, θ) = 3 sin(θ) sin(ϕ). Putting this altogether we get:

∫∫
S1

(∇×F) •n dσ =

∫ 2π

0

∫ π/2

0

〈6 sin(θ) sin(ϕ), 1− 6 cos(θ) sin(ϕ), 1〉 • 〈9 cos(θ) sin2(ϕ), 9 sin(θ) sin2(ϕ), 9 sin(ϕ) cos(ϕ)〉 dϕ dθ

=

∫ 2π

0

∫ π/2

0

(
54 sin(θ) cos(θ) sin3(ϕ) + 9 sin(θ) sin2(ϕ)− 54 sin(θ) cos(θ) sin3(ϕ) + 9 sin(ϕ) cos(ϕ)

)
dϕ dθ

=

∫ π/2

0

∫ 2π

0

(
9 sin(θ) sin2(ϕ) + 9 sin(ϕ) cos(ϕ)

)
dθ dϕ =

∫ π/2

0

∫ 2π

0

(
0 + 9 sin(ϕ) cos(ϕ)

)
dθ dϕ

=

∫ π/2

0

18π sin(ϕ) cos(ϕ) dϕ = 9π sin2(ϕ)
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π/2

0
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Calculation Notes: First, we simplified (computing the dot product and then canceling terms). Next, after changing the
order of integration, we note that sin(θ) integrated over the interval [0, 2π] yields an answer of 0. Then, the inner integral is
constant with respect to theta, so we just multiply by the length of the interval (i.e., 2π). Finally, the last integral is done
with a simple substitution: u = sin(ϕ) so du = cos(ϕ) dϕ.

Therefore, both the flux and line integral calculations yield the same answer (as they must).


