
Math 2130 Quadratic Approximations Supplement

We are already familiar with linear approximations of multivariable functions. These essentially amount
to equations of tangent planes. We also know these linear approximations by the name “differentials”. The
next natural step is to consider higher order approximations. We will study what these look like and in
particular focus on second order approximations – that is – quadratic approximations.

Single Variable:

First, let’s quickly review single variable theory. A linear approximation of a function f(x) at x = a is
given by L(x) = f(a) +f ′(a) · (x−a). This linear approximation is the line which best approximates f(x) at
x = a in the sense that f(x) and L(x) both pass through the point (a, f(a)) and both have the same slope
at x = a: f ′(a) = L′(a). Another way to state this is: L(x) is the first order Taylor polynomial of f(x) at
x = a. Recall from calculus II (or I) that the second order Taylor polynomial for f(x) at x = a is. . .

Q(x) = f(a) + f ′(a) · (x− a) +
f ′′(a)

2
· (x− a)2

This is the best quadratic approximation of f(x) in the sense that Q(x) is a quadratic polynomial,
f(a) = Q(a), f ′(a) = Q′(a), and f ′′(a) = Q′′(a). Finally, recall that the nth-order Taylor polynomial of f(x)
at x = a is given by. . .

Pn(x) = f(a) + f ′(a) · (x− a) +
f ′′(a)

2
· (x− a)2 +

f ′′′(a)

3!
· (x− a)3 + · · ·+ f (n)(a)

n!
· (x− a)n

This is the best nth-order polynomial approximation of f(x) in sense that Pn(x) is an nth-order polyno-

mial, f(a) = Pn(a), f ′(a) = P ′n(a), . . . , and f (n)(a) = P
(n)
n (a).

Multivariable Linear Approximations:

Our approximations and Taylor polynomials for multivariable functions will be best approximations in the
same way our single variable approximations were best – our approximations will have a matching function
value and matching partial derivatives at the base point. For a function of two variables f(x, y) at the point
(x, y) = (a, b) this looks like. . .

L(x, y) = f(a, b) + fx(a, b) · (x− a) + fy(a, b) · (y − b)
In three variables we have. . .

L(x, y, z) = f(a, b, c) + fx(a, b, c) · (x− a) + fy(a, b, c) · (y − b) + fz(a, b, c) · (z − c)

And finally in n variables the linearization of f(x1, . . . , xn) at (x1, . . . , xn) = (a1, . . . , an) is. . .

L(x1, . . . , xn) = f(a1, . . . , an)+fx1(a1, . . . , an)·(x1−a1)+fx2(a1, . . . , an)·(x2−a2)+· · ·+fxn(a1, . . . , an)·(xn−an)

By introducing the gradient we can state this much more concisely. The gradient of a function f(x1, . . . , xn) =
f(~x) is a vector whose entries consist of the first partials of f : ∇f(~x) = 〈fx1

(~x), fx2
(~x), . . . , fxn

(~x)〉

In particular, for f(x, y, z) we have ∇f =

〈
∂f

∂x
,
∂f

∂y
,
∂f

∂z

〉
. Using this notation the linearization of f(~x) at

~x = ~a is. . .
L(~x) = f(~a) +∇f(~a) • (~x− ~a)

where the dot between ∇f(~a) and ~x− ~a is the familiar dot product.
These linearizations are first order Taylor polynomials for multivariable functions. Next, we consider

quadratic approximations (second order Taylor polynomials).

Example: Let’s find the linearization of f(x, y) = x2y + x3y2 + y3 at (x, y) = (−1, 1).

We need to compute the first partials of f . fx(x, y) = 2xy+ 3x2y2 and fy(x, y) = x2 + 2x3y+ 3y2. Next,
we need to compute the value of f and its partials at the point (−1, 1) this yields f(−1, 1) = (−1)2(1) +
(−1)3(12) + 13 = 1, fx(−1, 1) = 2(−1)(1) + 3(−1)2(12) = 1, and fy(−1, 1) = (−1)2 + 2(−1)3(1) + 3(12) = 2.
Thus the linearization of f(x, y) at (−1, 1) is L(x, y) = 1 + 1 · (x− (−1)) + 2 · (y − 1).

Answer: L(x, y) = 1 + (x+ 1) + 2(y − 1) which is L(x, y) = x+ 2y.

This means that the plane tangent to the surface z = x2y+x3y2+y3 at (x, y, z) = (−1, 1, 1) is z = x+2y.
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Example: Let’s find the linearization of f(x, y, z) = x sin(y) + eyz
2

+ xyz at (x, y, z) = (3, 0,−2).

We need to compute the first partials of f . fx(x, y, z) = sin(y) + yz, fy(x, y, z) = x cos(y) + z2eyz
2

+ xz,

and fz(x, y, z) = 2zyeyz
2

+ xy. Next, we need to compute the value of f and its partials at the point

(3, 0,−2) this yields f(3, 0,−2) = 3 sin(0) + e0(−2)
2

+ 3(0)(−2) = e0 = 1, fx(3, 0,−2) = sin(0) + 0(−2) = 0,

fy(3, 0,−2) = 3 cos(0)+(−2)2e0(−2)
2

+3(−2) = 3+4e0−6 = 1, and fz(3, 0,−2) = 2(−2)(0)e0(−2)
2

+3(0) = 0.
Thus the linearization of f(x, y) at (3, 0,−2) is L(x, y, z) = 1 + 0 · (x− 3) + 1 · (y − 0) + 0 · (z − (−2)).

Answer: L(x, y, z) = 1 + y.

Notice that ∇f = 〈fx, fy, fz〉 = 〈sin(y) + yz, x cos(y) + z2eyz
2

+ xz, 2zyeyz
2

+ xy〉 so that ∇f(3, 0,−2) =
〈0, 1, 0〉. Thus another way to write the linearization is L(x, y, z) = 1 + 〈0, 1, 0〉 • 〈x− 3, y − 0, z − (−2)〉.

Multivariable Quadratic Approximations:

A second order Taylor polynomial should match our function’s value, its first partials, and its second
partials. For a function of two variables f(x, y) at the point (x, y) = (a, b) this looks like. . .

Q(x, y) = f(a, b) + fx(a, b) · (x− a) + fy(a, b) · (y − b) +

1

2
fxx(a, b) · (x− a)2 +

1

2
fxy(a, b) · (x− a)(y − b) +

1

2
fyx(a, b) · (x− a)(y − b) +

1

2
fyy(a, b) · (y − b)2

Under the (mild) assumption of continuous second paritals, Clairaut’s theorem applies and mixed partials
are equal. In this case we have. . .

Q(x, y) = f(a, b) + fx(a, b) · (x− a) + fy(a, b) · (y − b) +

1

2
fxx(a, b) · (x− a)2 + fxy(a, b) · (x− a)(y − b) +

1

2
fyy(a, b) · (y − b)2

In three variables this looks like (after suppressing the point of evaluation). . .

Q(x, y, z) = f + fx · (x− a) + fy · (y − b) + fz · (z − c) +
1

2
fxx · (x− a)2 +

1

2
fyy · (y − b)2 +

1

2
fzz · (z − c)2 +

1

2
fxy · (x− a)(y − b) +

1

2
fyx · (x− a)(y − b) +

1

2
fxz · (x− a)(z − c) +

1

2
fzx · (x− a)(z − c) +

1

2
fyz · (y − b)(z − c) +

1

2
fzy · (y − b)(z − c)

The formula for a quadratic approximation of a 3 variable function is bad enough. The n variable expres-
sion will be an even bigger mess unless we resort to matrix notation. If you are unfamiliar with matrix
multiplication, please read on, but don’t worry about the details.

Consider a function of n variables: f(~x). Let’s define an n × n matrix whose (i, j)-entry is fxixj . This
matrix is called the Hessian matrix of f . Here are the Hessians for h(x, y), g(x, y, z) and f(~x) = f(x1, . . . , xn):

Hh =

[
hxx hxy
hyx hyy

]
Hg =

gxx gxy gxz
gyx gyy gyz
gzx gzy gzz

 Hf =


fx1x1 fx1x2 · · · fx1xn

fx2x1
fx2x2

· · · fx2xn

...
...

. . .
...

fxnx1
fxnx2

· · · fxnxn


If ~x = 〈x1, x2, . . . , xn〉, ~xT is the transpose of ~x (transpose basically means “turn rows into columns”),

and Hf is the Hessian matrix for f , then we can restate the quadratic approximation of f(~x) at ~x = ~a as
follows:

Q(~x) = f(~a) +∇f(~a) • (~x− ~a) +
1

2
(~x− ~a)Hf (~x− ~a)T

where the last term is computed using matrix multiplication.
One quick note about the Hessian. Remember Clairaut’s theorem says that if our second partials are

continuous, then the mixed partials fxixj
and fxjxi

are equal. This means that in the first matrix hxy = hyx,
in the second matrix gxy = gyx, gyz = gzy, and gxz = gzx, and in the last matrix fxixj

= fxjxi
for all i’s

and j’s. Matrices with this property are called symmetric. Another way to put this is: If f has continuous
second partials, then Hf = HT

f (remember transpose means turn row i in column i) so in other words the

ith row of Hf has the same entries as the ith column of Hf .
Beyond giving us a nice way to write quadratic approximations of multivariable functions, the Hessian

matrix helps when we need to determine extremal behavior. Recall that an extreme point (a minimum or
maximum) for a function of one variable must occur at a point where the derivative is either zero or does
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not exist. Functions of more than one variable work the same way. Extreme points can only occur at points
where (all of) the first partials are zero or do not exist.

In Calculus I we learned the “second derivative test” which told us that a critial point with negative
second derivative (concave down) is a maximum and a critical point with a positive second derivative (concave
up) is a minimum. We will soon learn a “second dervative test” for functions of two variables, which relies
on the following general result: If all of the eigenvalues of the Hessian matrix are negative at a critical point,
then that point is a maximum. Also, if all of the eigenvalues of the Hessian matrix are positive at a critical
point, then that point is a minimum. And if the Hessian matrix has a mix of positive and negative values,
we have a saddle point (we will talk about these later).

If you don’t know what an eigenvalue is, that’s ok. They are special values associated with a square
matrix. Our second derivative test (for functions of two variables) will determine what type of eigenvalues
we have (positive or negative) without actually computing them. However, to have a second derivative test
for functions of more than two variables we would have to learn how to compute eigenvalues (which we won’t
do in this class).

Example: Let’s find the quadratic approximation of f(x, y) = x2y + x2y3 + 2x at (x, y) = (2,−1).

We need to compute the first and second partials and then plug in (x, y) = (2,−1). Maybe we should
make a table to keep track of all of this stuff.

f(x, y) = x2y + x2y3 + 2x f(2,−1) = −4

fx(x, y) = 2xy + 2xy3 + 2 fx(2,−1) = −6 fy(x, y) = x2 + 3x2y2 fy(2,−1) = 16

fxx(x, y) = 2y + 2y3 fxx(2,−1) = −4 fxy(x, y) = 2x+ 6xy2 fxy(2,−1) = 16

fyx(x, y) = 2x+ 6xy2 fyx(2,−1) = 16 fyy(x, y) = 6x2y fyy(2,−1) = −24

Putting this together we get:

Q(x, y) = −4 + (−6)(x− 2) + 16(y − (−1)) +
1

2
(−4)(x− 2)2 + 16(x− 2)(y − (−1)) +

1

2
(−24)(y − (−1))2

= −4− 6(x− 2) + 16(y + 1)− 2(x− 2)2 + 16(x− 2)(y + 1)− 12(y + 1)2

In our slick vector/matrix notation this looks like . . .

Q(x, y) = −4 + 〈−6, 16〉 • 〈x− 2, y + 1〉+
1

2

[
x− 2 y + 1

] [−4 16
16 −24

] [
x− 2
y + 1

]
Notice that since f has continuous second partials, its Hessian is symmetric: Hf =

[
2y + 2y3 2x+ 6xy2

2x+ 6xy2 6x2y

]
Example: Let’s find the quadratic approximation of f(x, y, z) = xyz + yesin(z) − 3z2 at (x, y, z) = (2, 1, 0).

We need to compute the first and second partials and then plug in (x, y, z) = (2, 1, 0). Let’s make a table.

f(x, y, z) = xyz + yez − 3z2 f(2, 1, 0) = 1

fx = yz fx(2, 1, 0) = 0 fy = xz + ez fy(2, 1, 0) = 1 fz = xy + yez − 6z fy(2, 1, 0) = 3

fxx = 0 fxx(2, 1, 0) = 0 fyy = 0 fyy(2, 1, 0) = 0 fzz = yez − 6 fzz(2, 1, 0) = −5

fxy = fyx = z fxy(2, 1, 0) = 0 fyz = fzy = x+ ez fyz(2, 1, 0) = 3 fxz = fzx = y fxz(2, 1, 0) = 1

Putting this together we get:

Q(x, y) = 1 + 0(x− 2) + 1(y − 1) + 3(z − 0) +
1

2
(0)(x− 2)2 +

1

2
(0)(y − 1)2 +

1

2
(−5)(z − 0)2 +

0(x− 2)(y − 1) + 3(y − 1)(z − 0) + 1(x− 2)(z − 0)

= 1 + (y − 1) + 3z − 5

2
z2 + 3(y − 1)z + (x− 2)z

In our slick vector/matrix notation this looks like . . .

Q(x, y) = 1 + 〈0, 1, 3〉 • 〈x− 2, y − 1, z〉+
1

2

[
x− 2 y − 1 z

] 0 0 1
0 0 3
1 3 −5

x− 2
y − 1
z


Again, since f has continuous second partials, its Hessian is symmetric: Hf =

0 z y
z 0 x+ ez

y x+ ez yez − 6
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A Bit About Taylor Polynomials:

The formulas for multivariate Taylor polynomials are quite complicated – or so they seem. If we approach
Taylor polynomials from a operator viewpoint, the multivariate formulas are easy to explain.

Recall that the MacLaurin series for ex is

∞∑
k=0

xk

k!
. Some textbooks use this series to define what we mean

by ex! It is quite surprising how many places the MacLaurin series for ex shows up. For example, if one

defines eA =

∞∑
k=0

Ak

k!
for a square matrix A, you get the matrix exponential which is computed when one

wants to solve linear systems of differential equations.

We define a formal series of derivative operators: e(x−a)
d
dx |x=a =

∞∑
k=0

(x− a)k

k!

dk

dxk

∣∣∣∣
x=a

. If we apply this

to some function f(x), we get. . . the Taylor series of f(x) based at x = a:

e(x−a)
d
dx |x=af(x) =

∞∑
k=0

(x− a)k

k!

dkf

dxk

∣∣∣∣
x=a

= f(a)+f ′(a) · (x−a)+
1

2
f ′′(a) · (x−a)2 +

1

3!
f ′′′(a) · (x−a)3 + · · ·

For a function of 2 variables, f(x, y), we use: [Note: I will drop the evaluation bars. All partials are
evaluated at (x, y) = (a, b).]

e(x−a)
∂
∂x+(y−b) ∂

∂y f(x, y) = f(a, b)+

(
(x− a)

∂

∂x
+ (y − b) ∂

∂y

)[
f(x, y)

]
+

1

2

(
(x− a)

∂

∂x
+ (y − b) ∂

∂y

)2 [
f(x, y)

]
+· · ·

Let’s examine how to expand the quadratic term.(
(x− a)

∂

∂x
+ (y − b) ∂

∂y

)2 [
f(x, y)

]
=

(
(x− a)

∂

∂x
+ (y − b) ∂

∂y

)(
(x− a)

∂

∂x
+ (y − b) ∂

∂y

)[
f(x, y)

]
= (x− a)2

∂2

∂x2

[
f(x, y)

]
+ (x− a)(y − b) ∂

∂x

∂

∂y

[
f(x, y)

]
+ (x− a)(y − b) ∂

∂y

∂

∂x

[
f(x, y)

]
+ (y − b)2 ∂

2

∂y2

[
f(x, y)

]
= (x− a)2fxx(a, b) + (x− a)(y − b)fyx(a, b) + (x− a)(y − b)fxy(a, b) + (y − b)2fyy(a, b)

If we assume that the second partials are continuous, this becomes . . .

= (x− a)2fxx(a, b) + 2(x− a)(y − b)fxy(a, b) + (y − b)2fyy(a, b)

Assuming continuity of third order partials the next few terms of the Taylor series are
1

3!

(
(x− a)3fxxx(a, b) + 3(x− a)2(y − b)fxxy(a, b) + 3(x− a)(y − b)2fxyy(a, b) + (y − b)3fyyy(a, b)

)
Because we are expanding a binomial of operators, we see binomial coefficients starting to appear.

If we let∇ =

〈
∂

∂x1
,
∂

∂x2
, . . . ,

∂

∂xn

〉
then (~x− ~a) •∇ = (x1 − a1)

∂

∂x1
+ (x2 − a2)

∂

∂x2
+ · · ·+ (xn − an)

∂

∂xn
.

The Taylor series for f(~x) centered at ~x = ~a is e(~x−~a) •∇[f(~x)].

Exercises: [See the accompanying Maple worksheet for answers.]

For problems 1 – 11, find the linearization and quadratic approximation of f at the given point. Then
write the Hessian matrix of the function.

1. f(x, y) = ex+2y with (a, b) = (0, 0) 2. f(x, y) = x2 + xy2 with (a, b) = (2, 3)

3. f(x, y) = x4y2 + xy − 2y with (a, b) = (−1, 0) 4. f(x, y) = 2x2 + 3y4 + exy
2

with (a, b) = (2, 0)

5. f(x, y) = sin(xy) with (a, b) = (3, π) 6. f(x, y) = ln(x2 + y) with (a, b) = (1, 0)

7. f(x, y) = cos(xy) with (a, b) = (
√
π,
√
π) 8. f(x, y, z) = xyz with (a, b, c) = (1, 2, 3)

9. f(x, y, z) = x4 + y4 + z4 with (a, b, c) = (−1, 0, 1) 10. f(x, y, z) = x2z + xy2 + y3z2 + exy+z

with (a, b, c) = (2, 1,−2)11. f(w, x, y, z) = w + x2 + y3 + z4 + w2 cos(xy2) with (a, b, c, d) = (0, 0, 0, 0)
12. Let f(x, y) = Ax+By + C with linear and quadratic approximations (based at (x, y) = (a, b)) called

L(x, y) and Q(x, y). Show f(x, y) = L(x, y) = Q(x, y).
What should I expect if f(x, y) = Ax2 +By2 + Cxy +Dx+ Ey + F?

Assume continuity of all partial derivatives (so Clairaut’s theorem applies).
13. Write down the 3rd-order terms for the Taylor polynomial expansion of f(x, y, z) at (x, y, z) = (a, b, c).
14. Write down the 4th-order terms for the Taylor polynomial expansion of f(x, y) at (x, y) = (a, b).
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