DEF: Elementary Row Operations (for matrices).

Type I Swap Row i and Row j

Type II Multiply Row i by c where $c \neq 0$.

Type III Add c times Row i to Row j where c is any scalar.

DEF: A matrix is in row echelon form if

- Each non-zero row is above all zero rows that is zero rows are "pushed" to the bottom.
- The leading entry of a row is *strictly* to the right of the leading entries of the rows above. (The leftmost non-zero entry of a row is called the "leading entry".)
- Each leading entry is "1". (*Note:* Many textbooks do not make this third requirement.)

If in addition...

• Only zeros appear above (& below) a leading entry of a row.

then a matrix is in reduced row echelon form.

Gauss-Jordan Elimination is an "algorithm" which given a matrix returns a row equivalent matrix in reduced row echelon form.

- 1. Determine the leftmost non-zero column. This is a **pivot column** and the topmost entry is a **pivot position**. If "0" is in this pivot position, swap (an unignored) row with the topmost row (use a Type I operation) so that there is a non-zero entry in the pivot position.
- 2. Add appropriate multiples of the topmost (unignored) row to the rows beneath it so that only "0" appears below the pivot (use several Type III operations).
- 3. Ignore the topmost (unignored) row. If any non-zero rows remain, go to step 1.

This part of Gauss-Jordan Elimination is called the **forward pass**. If in addition we scale each row so that the pivots are all 1's (using Type II operations), then our matrix would be in row echelon form. Now let's finish Gauss-Jordan Elimination.

- 1. If necessary, scale the rightmost unfinished pivot to 1 (use a Type II operation).
- 2. Add appropriate multiples of the current pivot's row to rows above it so that only 0 appears above the current pivot (using several Type III operations).
- 3. The current pivot is now "finished". If any unfinished pivots remain, go to step 4.

This part of Gauss-Jordan Elimination is called the **backward pass**. It should be fairly obvious that this algorithm will terminate in finitely many steps. Also, only elementary row operations have been used. So we end up with a row equivalent matrix. A tedious and wordy proof shows that the resulting matrix is in reduced row echelon form.