DUE: Monday, November 3^{rd} at the **beginning** of class.

I. From section 4.8, do problems 38 and 40 – Use Maple to plot these equations in both the original and rotated coordinates.

Note: Use implicitplot to plot these conic sections. For example:

- $\left[\right\rangle$ with(plots):
- [\rangle implicit plot $\left(x^2 + \frac{y^2}{4} = 1, x = -2..2, y = -2..2, \text{scaling} = \text{constrained}\right);$
- II. Let U and W be subspaces of a vector space V.
 - (a) Show that $U \cap W = \{v \in V \mid v \in U \text{ and } v \in W\}$ is a subspace of V.
 - (b) Show that $U + W = \{u + w \mid u \in U \text{ and } w \in W\}$ is a subspace of V.

BONUS: Prove that $\dim(U+W) = \dim(U) + \dim(W) - \dim(U \cap W)$

- III. Consider $V = P_3$ (polynomials of degree 3 and less). Let $U = \{f(x) \in P_3 \mid f(0) = 0\}$ and let $W = \{f(x) = a_3x^3 + a_2x^2 + a_1x + a_0 \mid a_3 + a_2 + a_1 + a_0 = 0\}$.
 - (a) Show that U and W are subspaces.
 - (b) Show that $\beta = \{t, t^2, t^3\}$ is a basis for U.
 - (c) Find a basis W (remember to show that your basis is a basis).
 - (d) Find a basis for $U \cap W$.
 - (e) Show that $U + W = P_3$.