
Math 2240 Vector Spaces Project #4

ANSWER KEY

I. From section 4.8, do problems 38 and 40 – Use Maple to plot these equations in both
the original and rotated coordinates.
Note: Use implicitplot to plot these conic sections. For example:

[

〉 with(plots) :

[

〉 implicitplot

(

x2 +
y2

4
= 1, x = −2..2, y = −2..2, scaling = constrained

)

;

Answer: Skip – see a previous posted example for how to do this in Maple.

II. Let U and W be subspaces of a vector space V .

(a) Show that U ∩ W = {v ∈ V | v ∈ U and v ∈ W} is a subspace of V .

Vectors in U and W are vectors in V since U and W are subspaces – thus also
subsets of V . Therefore, U ∩ W ⊂ V .

Notice that 0 ∈ U and 0 ∈ W (since they are subspaces). Therefore, 0 ∈ U ∩ W

(so that U ∩ W is non-empty).

Let u, v ∈ U ∩ W . This means that u, v ∈ U and u, v ∈ W . But U and W are
subspaces so that u + v ∈ U and u + v ∈ W . Therefore, u + v ∈ U ∩ W (so that
U ∩ W is closed under vector addition).

Let u ∈ U ∩W and c ∈ R. This means that u ∈ U and v ∈ W and thus cu ∈ U and
cu ∈ W (since U and W are subspaces). Therefore, cu ∈ U ∩W (so that U ∩W is
closed under scalar multiplication).

Therefore, U ∩ W is a subspace of V .

(b) Show that U + W = {u + w | u ∈ U and w ∈ W} is a subspace of V .

Vectors in U and W are vectors in V since U and W are subspaces – so sums of
vectors in U and W are vectors in V . Therefore, U + W ⊂ V .

Notice that 0 ∈ U and 0 ∈ W (since they are subspaces). Therefore, 0 = 0 + 0 ∈
U + W (so that U + W is non-empty).

Let v1, v2 ∈ U + W . This means that vi = ui + wi for some ui ∈ U and wi ∈ W .
However, U and W are subspaces, so u1 + u2 ∈ U and w1 + w2 ∈ W . Therefore,
v1 + v2 = (u1 + w1) + (u2 + w2) = (u1 + u2) + (w1 + w2) ∈ U + W (so that U + W

is closed under vector addition).



Let v ∈ U + W and c ∈ R. This means that v = u + w for some u ∈ U and
w ∈ W . However, U and W are subspaces, so cu ∈ U and cw ∈ W . Therefore,
cv = c(u + w) = (cu) + (cw) ∈ U + W (so that U + W is closed under scalar
multiplication).

Therefore, U + W is a subspace of V .

BONUS: Prove that dim(U + W ) = dim(U) + dim(W ) − dim(U ∩ W )

Let β = {v1, . . . , vk} be a basis for U ∩ W . So β is a linearly independent subset of
both U and W . Every linearly independent subset can be extended to a basis. Let
γ = {v1, . . . , vk, u1, . . . , u`} be such a basis for U and δ = {v1, . . . , vk, w1, . . . , wm} such
a basis for W .

I claim that τ = γ ∪ δ = {v1, . . . , vk, u1, . . . , u`, w1, . . . , wm} is a basis for U + W .

[Note: τ has k + `+m elements since ui 6= wj because if ui = wj then ui = wj ∈ U ∩W

and thus we found an element independent of v1, . . . , vk in U ∩ W contradicting the
fact that β is a basis for U ∩ W .]

Notice that τ spans U + W . Let v ∈ U + W so that v = u + w for some u ∈ U and
w ∈ W . But u =

∑

aivi +
∑

bjuj because γ is a basis for U and w =
∑

civi +
∑

djwj

because δ is a basis for W . Therefore, v = u + w is a linear combination of the vi’s,
ui’s, and wi’s so that τ spans U + W .

Finally, suppose that
∑

aivi +
∑

bjuj +
∑

cnwn = 0. Then v′ =
∑

aivi +
∑

bjuj =
−
∑

cnwn which is an element of U (look at the left hand side) and an element of
W (look at the right hand side). Therefore, v′ =

∑

dnvn (since v′ ∈ U ∩ W and
β = {v1, . . . , vk} is a basis). Therefore, 0 = v′ − v′ =

∑

divi +
∑

cjwj and therefore,
di = 0 and cj = 0 for all i, j’s (since δ is linearly independent). So we now have that
v′ =

∑

0wj = 0. So that 0 =
∑

aivi +
∑

bjuj and thus ai = 0 and bj = 0 for all i, j’s
(since γ is linearly independent). Therefore, τ is linearly indepedent.

We have shown that τ is a basis for U +W . Notice we have the formula: |γ|+ |δ|−|β| =
(k+`)+(k+m)−k = k+`+m = |τ | which says that dim(U)+dim(W )−dim(U∩W ) =
dim(U + W ).

III. Consider V = P3 (polynomials of degree 3 and less). Let U = {f(x) ∈ P3 | f(0) = 0}
and let W = {f(x) = a3x

3 + a2x
2 + a1x + a0 | a3 + a2 + a1 + a0 = 0}.

(a) Show that U and W are subspaces.

Notice that 0(0) = 0 so that 0 ∈ U . Also, f, g ∈ U implies that f(0) = 0 and
g(0) = 0 so that (f + g)(0) = f(0) + g(0) = 0 + 0 = 0. Thus f + g ∈ U . Finally,
f ∈ U and c ∈ R then (cf)(0) = cf(0) = c0 = 0 so that cf ∈ U . Therefore, U is
a subspace of P3 (non-empty + closed under vector addition + closed under scalar
multiplication).

First, notice that 0+0+0+0 = 0 so that 0 ∈ W (the sum of the zero polynomials
coefficients is zero). Let f, g ∈ W then f(t) = a3t

3 + a2t
2 + a1t + a0 where a4 +



a3 + a2 + a1 + a0 = 0 and g(t) = b3t
3 + b2t

2 + b1t + b0 where b4 + b3 + b2 + b1 + b0 =
0. Therefore, (f + g)(t) = (a3 + b3)t

3 + (a2 + b2)t
2 + (a1 + b1)t + (a0 + b0) and

(a3+b3)+(a2+b2)+(a1+b1)+(a0+b0) = (a4+a3+a2+a1+a0)+(b4+b3+b2+b1+b0) =
0 + 0 = 0 so that f + g ∈ W . Likewise if c ∈ R then ca4 + ca3 + ca2 + ca1 + ca0 =
c(a4 + a3 + a2 + a1 + a0) = c0 = 0 so that cf ∈ W . Therefore, W is a subspace of
P3.

(b) Show that β = {t, t2, t3} is a basis for U .

Obviously β ⊂ U (for each element, plug in zero and you get zero).

If at + bt2 + ct3 = 0 then at + bt2 + ct3 = 0t3 + 0t2 + 0t + 0 · 1 so that a = b = c = 0.
Thus β is linearly independent.

Let f ∈ U . Then f(t) = a3t
3 + a2t

2 + a1t + a0 and a0 = f(0) = 0. So we have that
f(t) = a3t

3 + a2t
2 + a1t ∈ span(β). Therefore, β spans U . Thus β is a basis for U

(dim(U) = 3).

Alternate proof: 1 6∈ U since if h(t) = 1 then h(0) = 1 6= 0. So U 6= P3. Therefore,
dim(U) < dim(P3) = 4. But β is a subset of the standard basis for P3 so it is
linearly independent. Thus U contains a linearly independent set of size 3. Thus
dim(U) ≥ 3. So dim(U) = 3. Now β is a linearly independent set with 3 = dim(U)
vectors so β automatically spans (so it is a basis for U).

(c) Find a basis W (remember to show that your basis is a basis).

Notice that W contains t3−1, t2−1, and t−1 (since their coefficients sum to 1−1 =
0). Also, a(t3−1)+b(t2−1)+c(t−1) = 0 implies that at3 +bt2 +ct−(a+b+c) = 0
so that a = b = c = 0. Therefore, γ = {t3−1, t2−1, t−1} is a linearly independent
subset of W (from this we also have that dim(W ) ≥ 3). Notice that W 6= P3 since
1 6∈ W (1’s coefficients sum to 1 not 0). Therefore, dim(W ) < dim(P3) = 4. Thus
dim(W ) = 3 and so γ automatically spans (so it is a basis for W ).

(d) Find a basis for U ∩ W .

Let f ∈ U ∩W and f(t) = a3t
3 + a2t

2 + a1t + a0. f ∈ U implies that a0 = f(0) = 0
and f ∈ W implies that a3 + a2 + a1 + a0 = 0 so that a3 + a2 + a1 = 0 and thus
a3 = −(a2+a1). So f(t) = −(a2+a1)t

3+a2t
2+a1t If a1 = 0, we need a3 = −a2 and if

a2 = 0, then a3 = −a1. Thus −t3+t2 and −t3+t are elements of U∩W . Notice that
a(−t3 + t2)+ b(−t3 + t) = 0 implies that −(a+ b)t3 +at2 + bt = 0 so that a = b = 0.
Therefore, δ = {−t3 + t2,−t3 + t} is a linearly independent subset of U ∩ W .
Moreover, we know that f(t) = −(a2 +a1)t

3 +a2t
2 +a1t = a2(−t3 + t2)+a1(−t3 + t)

so δ spans U ∩ W and so it is a basis.

(e) Show that U + W = P3.

Notice that dim(U) = 3 and t − 1 = 0 + (t − 1) ∈ U + W but t − 1 6∈ U (since
0 − 1 = −1 6= 0). Therefore, U + W is larger than U so that dim(U + W ) > 3
which implies that dim(U + W ) = 4 = dim(P3). Therefore, U + W = P3.



Alternatively, notice that f(t) = a3t
3 + a2t

2 + a1t + a0 = (a3 + a2 + a1 + a0)t
3 +

(−a2−a1−a0)t
3 +a2t

2 +a1t+a0 which is a sum of an element of U and an element
of W . Therefore, every element in P3 can be expressed as the sum of an element
in U and an element of W so that P3 = U + W .

Or (using the bonus problem) dim(U) + dim(W )− dim(U ∩W ) = 3 + 3− 2 = 4 =
dim(U + W ) so U + W = P3.


