ANSWER KEY

I. From section 4.8, do problems 38 and 40 – Use Maple to plot these equations in both the original and rotated coordinates.

Note: Use implicitplot to plot these conic sections. For example:

- $\left[\right\rangle$ with(plots):
- $\left[\right\rangle \quad \text{implicit plot}\left(x^2+\frac{y^2}{4}=1, x=-2..2, y=-2..2, \text{scaling}=\text{constrained}\right);$

Answer: Skip – see a previous posted example for how to do this in Maple.

- II. Let U and W be subspaces of a vector space V.
 - (a) Show that $U \cap W = \{v \in V \mid v \in U \text{ and } v \in W\}$ is a subspace of V.

Vectors in U and W are vectors in V since U and W are subspaces – thus also subsets of V. Therefore, $U \cap W \subset V$.

Notice that $0 \in U$ and $0 \in W$ (since they are subspaces). Therefore, $0 \in U \cap W$ (so that $U \cap W$ is non-empty).

Let $u, v \in U \cap W$. This means that $u, v \in U$ and $u, v \in W$. But U and W are subspaces so that $u + v \in U$ and $u + v \in W$. Therefore, $u + v \in U \cap W$ (so that $U \cap W$ is closed under vector addition).

Let $u \in U \cap W$ and $c \in \mathbb{R}$. This means that $u \in U$ and $v \in W$ and thus $cu \in U$ and $cu \in W$ (since U and W are subspaces). Therefore, $cu \in U \cap W$ (so that $U \cap W$ is closed under scalar multiplication).

Therefore, $U \cap W$ is a subspace of V.

(b) Show that $U+W=\{u+w\mid u\in U \text{ and } w\in W\}$ is a subspace of V.

Vectors in U and W are vectors in V since U and W are subspaces – so sums of vectors in U and W are vectors in V. Therefore, $U + W \subset V$.

Notice that $0 \in U$ and $0 \in W$ (since they are subspaces). Therefore, $0 = 0 + 0 \in U + W$ (so that U + W is non-empty).

Let $v_1, v_2 \in U + W$. This means that $v_i = u_i + w_i$ for some $u_i \in U$ and $w_i \in W$. However, U and W are subspaces, so $u_1 + u_2 \in U$ and $w_1 + w_2 \in W$. Therefore, $v_1 + v_2 = (u_1 + w_1) + (u_2 + w_2) = (u_1 + u_2) + (w_1 + w_2) \in U + W$ (so that U + W is closed under vector addition).

Let $v \in U + W$ and $c \in \mathbb{R}$. This means that v = u + w for some $u \in U$ and $w \in W$. However, U and W are subspaces, so $cu \in U$ and $cw \in W$. Therefore, $cv = c(u + w) = (cu) + (cw) \in U + W$ (so that U + W is closed under scalar multiplication).

Therefore, U + W is a subspace of V.

BONUS: Prove that $\dim(U+W) = \dim(U) + \dim(W) - \dim(U \cap W)$

Let $\beta = \{v_1, \ldots, v_k\}$ be a basis for $U \cap W$. So β is a linearly independent subset of both U and W. Every linearly independent subset can be extended to a basis. Let $\gamma = \{v_1, \ldots, v_k, u_1, \ldots, u_\ell\}$ be such a basis for U and $\delta = \{v_1, \ldots, v_k, w_1, \ldots, w_m\}$ such a basis for W.

I claim that $\tau = \gamma \cup \delta = \{v_1, \dots, v_k, u_1, \dots, u_\ell, w_1, \dots, w_m\}$ is a basis for U + W.

[Note: τ has $k+\ell+m$ elements since $u_i \neq w_j$ because if $u_i = w_j$ then $u_i = w_j \in U \cap W$ and thus we found an element independent of v_1, \ldots, v_k in $U \cap W$ contradicting the fact that β is a basis for $U \cap W$.]

Notice that τ spans U+W. Let $v \in U+W$ so that v=u+w for some $u \in U$ and $w \in W$. But $u = \sum a_i v_i + \sum b_j u_j$ because γ is a basis for U and $w = \sum c_i v_i + \sum d_j w_j$ because δ is a basis for W. Therefore, v=u+w is a linear combination of the v_i 's, u_i 's, and w_i 's so that τ spans U+W.

Finally, suppose that $\sum a_i v_i + \sum b_j u_j + \sum c_n w_n = 0$. Then $v' = \sum a_i v_i + \sum b_j u_j = -\sum c_n w_n$ which is an element of U (look at the left hand side) and an element of W (look at the right hand side). Therefore, $v' = \sum d_n v_n$ (since $v' \in U \cap W$ and $\beta = \{v_1, \ldots, v_k\}$ is a basis). Therefore, $0 = v' - v' = \sum d_i v_i + \sum c_j w_j$ and therefore, $d_i = 0$ and $c_j = 0$ for all i, j's (since δ is linearly independent). So we now have that $v' = \sum 0 w_j = 0$. So that $0 = \sum a_i v_i + \sum b_j u_j$ and thus $a_i = 0$ and $b_j = 0$ for all i, j's (since γ is linearly independent). Therefore, τ is linearly independent.

We have shown that τ is a basis for U+W. Notice we have the formula: $|\gamma|+|\delta|-|\beta|=(k+\ell)+(k+m)-k=k+\ell+m=|\tau|$ which says that $\dim(U)+\dim(W)-\dim(U\cap W)=\dim(U+W)$.

- III. Consider $V = P_3$ (polynomials of degree 3 and less). Let $U = \{f(x) \in P_3 \mid f(0) = 0\}$ and let $W = \{f(x) = a_3x^3 + a_2x^2 + a_1x + a_0 \mid a_3 + a_2 + a_1 + a_0 = 0\}$.
 - (a) Show that U and W are subspaces.

Notice that 0(0) = 0 so that $0 \in U$. Also, $f, g \in U$ implies that f(0) = 0 and g(0) = 0 so that (f + g)(0) = f(0) + g(0) = 0 + 0 = 0. Thus $f + g \in U$. Finally, $f \in U$ and $c \in \mathbb{R}$ then (cf)(0) = cf(0) = c0 = 0 so that $cf \in U$. Therefore, U is a subspace of P_3 (non-empty + closed under vector addition + closed under scalar multiplication).

First, notice that 0+0+0+0=0 so that $0 \in W$ (the sum of the zero polynomials coefficients is zero). Let $f, g \in W$ then $f(t) = a_3t^3 + a_2t^2 + a_1t + a_0$ where $a_4 + a_1t + a_2t + a_$

 $a_3 + a_2 + a_1 + a_0 = 0$ and $g(t) = b_3 t^3 + b_2 t^2 + b_1 t + b_0$ where $b_4 + b_3 + b_2 + b_1 + b_0 = 0$. Therefore, $(f + g)(t) = (a_3 + b_3)t^3 + (a_2 + b_2)t^2 + (a_1 + b_1)t + (a_0 + b_0)$ and $(a_3 + b_3) + (a_2 + b_2) + (a_1 + b_1) + (a_0 + b_0) = (a_4 + a_3 + a_2 + a_1 + a_0) + (b_4 + b_3 + b_2 + b_1 + b_0) = 0 + 0 = 0$ so that $f + g \in W$. Likewise if $c \in \mathbb{R}$ then $ca_4 + ca_3 + ca_2 + ca_1 + ca_0 = c(a_4 + a_3 + a_2 + a_1 + a_0) = c0 = 0$ so that $cf \in W$. Therefore, C is a subspace of C.

(b) Show that $\beta = \{t, t^2, t^3\}$ is a basis for U.

Obviously $\beta \subset U$ (for each element, plug in zero and you get zero).

If $at + bt^2 + ct^3 = 0$ then $at + bt^2 + ct^3 = 0t^3 + 0t^2 + 0t + 0 \cdot 1$ so that a = b = c = 0. Thus β is linearly independent.

Let $f \in U$. Then $f(t) = a_3t^3 + a_2t^2 + a_1t + a_0$ and $a_0 = f(0) = 0$. So we have that $f(t) = a_3t^3 + a_2t^2 + a_1t \in \text{span}(\beta)$. Therefore, β spans U. Thus β is a basis for $U(\dim(U) = 3)$.

Alternate proof: $1 \notin U$ since if h(t) = 1 then $h(0) = 1 \neq 0$. So $U \neq P_3$. Therefore, $\dim(U) < \dim(P_3) = 4$. But β is a subset of the standard basis for P_3 so it is linearly independent. Thus U contains a linearly independent set of size 3. Thus $\dim(U) \geq 3$. So $\dim(U) = 3$. Now β is a linearly independent set with $3 = \dim(U)$ vectors so β automatically spans (so it is a basis for U).

(c) Find a basis W (remember to show that your basis is a basis).

Notice that W contains t^3-1 , t^2-1 , and t-1 (since their coefficients sum to 1-1=0). Also, $a(t^3-1)+b(t^2-1)+c(t-1)=0$ implies that $at^3+bt^2+ct-(a+b+c)=0$ so that a=b=c=0. Therefore, $\gamma=\{t^3-1,t^2-1,t-1\}$ is a linearly independent subset of W (from this we also have that $\dim(W)\geq 3$). Notice that $W\neq P_3$ since $1\not\in W$ (1's coefficients sum to 1 not 0). Therefore, $\dim(W)<\dim(P_3)=4$. Thus $\dim(W)=3$ and so γ automatically spans (so it is a basis for W).

(d) Find a basis for $U \cap W$.

Let $f \in U \cap W$ and $f(t) = a_3t^3 + a_2t^2 + a_1t + a_0$. $f \in U$ implies that $a_0 = f(0) = 0$ and $f \in W$ implies that $a_3 + a_2 + a_1 + a_0 = 0$ so that $a_3 + a_2 + a_1 = 0$ and thus $a_3 = -(a_2 + a_1)$. So $f(t) = -(a_2 + a_1)t^3 + a_2t^2 + a_1t$ If $a_1 = 0$, we need $a_3 = -a_2$ and if $a_2 = 0$, then $a_3 = -a_1$. Thus $-t^3 + t^2$ and $-t^3 + t$ are elements of $U \cap W$. Notice that $a(-t^3 + t^2) + b(-t^3 + t) = 0$ implies that $-(a + b)t^3 + at^2 + bt = 0$ so that a = b = 0. Therefore, $\delta = \{-t^3 + t^2, -t^3 + t\}$ is a linearly independent subset of $U \cap W$. Moreover, we know that $f(t) = -(a_2 + a_1)t^3 + a_2t^2 + a_1t = a_2(-t^3 + t^2) + a_1(-t^3 + t)$ so δ spans $U \cap W$ and so it is a basis.

(e) Show that $U + W = P_3$.

Notice that $\dim(U) = 3$ and $t - 1 = 0 + (t - 1) \in U + W$ but $t - 1 \notin U$ (since $0 - 1 = -1 \neq 0$). Therefore, U + W is larger than U so that $\dim(U + W) > 3$ which implies that $\dim(U + W) = 4 = \dim(P_3)$. Therefore, $U + W = P_3$.

Alternatively, notice that $f(t) = a_3t^3 + a_2t^2 + a_1t + a_0 = (a_3 + a_2 + a_1 + a_0)t^3 + (-a_2 - a_1 - a_0)t^3 + a_2t^2 + a_1t + a_0$ which is a sum of an element of U and an element of W. Therefore, every element in P_3 can be expressed as the sum of an element in U and an element of W so that $P_3 = U + W$.

Or (using the bonus problem) $\dim(U) + \dim(W) - \dim(U \cap W) = 3 + 3 - 2 = 4 = \dim(U + W)$ so $U + W = P_3$.