
Math 2240 Eigen-Project — ANSWER KEY Project #5

I. Let T : P2 → P2 be defined by T (f(t)) = f ′′(t) + 2f ′(t) + f(t). Also, let α = {1, t, t2}
(the standard basis). Note: T is a linear transformation.

(a) Determine [T ]α.

• T (1) = 0 + 2(0) + 1 = 1 =⇒ [T (1)]α =

1
0
0


• T (t) = 0 + 2(1) + t = 2 + t =⇒ [T (t)]α =

2
1
0


• T (t2) = 2 + 2(2t) + t2 = 2 + 4t+ t2 =⇒ [T (t)]α =

2
4
1


Therefore, [T ]α =

1 2 2
0 1 4
0 0 1


(b) Find bases for both the Kernel and Range of T . In addition, find the nullity and

rank of T . Is T invertible?

Notice that [T ]α ∼ I3 (the matrix of T row reduces to the identity). Thus the
nullspace is the zero subspace and the column space is the everything. Therefore,
Ker(T ) = {0} (T is one-to-one) and Range(T ) = P2 (T is onto). Therefore, φ = {}
(the empty set) is a basis for the kernel and α = {1, t, t2} is a basis for the range.
Alternatively, we could use the “columns” of the matrix to find a basis for the range.
This would give us, {1, 2 + t, 2 + 4t+ t2} which is also a basis for Range(T ) = P2.

Since T is one-to-one and onto, T is invertible...OR...Since ([T ]α)−1 exists, so does
T−1.

(c) Find the eigenvalues of T . Find the cooresponding eigenvectors.

Using [T ]α, it is easy to see that the characteristic polynomial of T is f(t) = (t−1)3.
So λ = 1 is the only eigenvalue of T and its algebraic multiplicity is 3.

Let’s find eigenvectors for [T ]α and λ = 1:

[1I3 − [T ]α : 0] =

0 −2 −2 : 0
0 0 −4 : 0
0 0 0 : 0

 G.E.∼

0 1 0 : 0
0 0 1 : 0
0 0 0 : 0


Labeling variables x1, x2, and x3, we see that x2 = 0, x3 = 0, and x1 is free.

Therefore,

1
0
0

 s is an eigenvector for all s 6= 0. Remember that we are looking

for eigenvectors for T (not [T ]α). The vectors we just found are coordinate vectors



for the polynomials f(t) = s+ 0t+ 0t2. So the eigenvectors for T (with eigenvalue
λ = 1) are exactly the non-zero constant polynomials.

(d) Determine all geometric and algebraic multiplicities. Is T diagonalizable?

“NO” T is not diagonalizable.
We found that the only eigenvalue of T is λ = 1. Its algebraic multiplicity is 3 and
geometric multiplicity is 1. Since 1 < 3 (T doesn’t have “enough” eigenvectors), T
is not diagonalizable.

II. Let A =

 3 −2 3
−1 2 −1
0 0 0


(a) Find eigenvectors and eigenvalues for A.

(Expand along the bottom row.)

det(tI3 − A) = det

t− 3 2 −3
1 t− 2 1
0 0 t

 = t · det

([
t− 3 2

1 t− 2

])
= t[(t− 3)(t− 2)− 2] = t(t2 − 5t+ 4) = t(t− 4)(t− 1)

So the eigenvalues of A are λ = 0, 4, 1 (each with multiplicity 1). Therefore, A is
diagonalizable.

Let’s find eigenvectors.

λ = 0 : [0I3 − A : 0]

−3 2 −3 : 0
1 −2 1 : 0
0 0 0 : 0

 G.E.∼

1 0 1 : 0
0 1 0 : 0
0 0 0 : 0

 Labeling variables

x1, x2, and x3, we see that x1 + x3 = 0, x2 = 0, and x3 is free. Therefore, we

get

−1
0
1

 t is an eigenvector with eigenvalue λ = 0 for all t 6= 0.

λ = 4 : [4I3 − A : 0]

1 2 −3 : 0
1 2 1 : 0
0 0 4 : 0

 G.E.∼

1 2 0 : 0
0 0 1 : 0
0 0 0 : 0

 Labeling variables x1,

x2, and x3, we see that x1 + 2x2 = 0, x3 = 0, and x2 is free. Therefore, we get−2
1
0

 t is an eigenvector with eigenvalue λ = 4 for all t 6= 0.

λ = 1 : [1I3 − A : 0]

−2 2 −3 : 0
1 −1 1 : 0
0 0 1 : 0

 G.E.∼

1 −1 0 : 0
0 0 1 : 0
0 0 0 : 0

 Labeling vari-

ables x1, x2, and x3, we see that x1−x2 = 0, x3 = 0, and x2 is free. Therefore,

we get

1
1
0

 t is an eigenvector with eigenvalue λ = 1 for all t 6= 0.



(b) Find a matrix, P , which diagonalizes A.

Therefore, P =

−1 −2 1
0 1 1
1 0 0

 diagonalizes A

with corresponding diagonal matrix D = P−1AP =

0 0 0
0 4 0
0 0 1

.

(c) Use part (b) to find B =
√
A (that is: B2 = A).

Since D = P−1AP , we have A = PDP−1 and so

√
A = P

√
DP−1 =

−1 −2 1
0 1 1
1 0 0

√0 0 0

0
√

4 0

0 0
√

1

 1

3

 0 0 3
−1 1 −1
1 2 1

 =
1

3

 5 −2 5
−1 4 −1
0 0 0


We can double check and find that

√
A ·
√
A = A X

III. Let A be an n× n matrix.

(a) Show that A is non-singular (i.e. invertible) if and only if λ = 0 is not an eigenvalue
of A.

There are a million ways to prove this. Here are two:

• Let f(t) = det(tI − A) (the characteristic polynomial). λ = 0 is an eigenvalue
if and only if f(λ) = f(0) = 0 ⇔ (−1)ndet(A) = det(−A) = f(0) = 0. So
λ = 0 if and only if det(A) = 0 (i.e. A is not invertible).

• Let λ = 0 be an eigenvalue. So there must be an eigevector v 6= 0 such that
Av = 0v = 0. This means that the homogeneous system of equations Ax = 0
has a non-trivial solution so that nullity(A) 6= 0 and thus A−1 does not exist.
Conversely, if A−1 does not exist, then nullity(A) 6= 0 and so there is a non-
trivial solution, x 6= 0, for Ax = 0. This non-trivial solution is an eigenvector
with eigenvalue 0.

(b) Show that A and A−1 have the same eigenvectors.

We are implicitly assuming that A−1 exists. Therefore, by part (a), the eigenvalues
of A are non-zero.

Let v 6= 0 be an eigenvector with eigenvalue λ (λ 6= 0 since A is invertible).
Therefore, Av = λv. Mutliply both sides of this equation (on the left) by A−1 and
get: v = Inv = A−1Av = A−1λv. Therefore, λA−1v = v. Since λ 6= 0 we can
divide both sides by λ and get A−1v = λ−1v. Therefore, v is also an eigevector for
A−1 with eigenvalue λ−1.

Finally, replacing A with A−1 in the above argument, we see that if v is an eigen-
vector for A−1 with eigenvalue λ, then v is an eigenvector for A with eigenvalue
λ−1.



Therefore, A and A−1 have the same eigenvectors.

Note: Since A and A−1 have the same eigenvectors, we can conclude that A is
diagonalizable if and only if A−1 is diagonalizable. Moreover, the same matrix will
diagonalize both!

(c) How are the eigenvalues of A and A−1 related? Give an example. Then prove your
conjectured relationship in general.

Our previous proof (from part (b)) shows that λ is an eigenvalue for A if and only
if λ−1 is an eigenvalue for A−1.

Example: Let A =

[
1 2
2 1

]
and P =

[
−1 1
1 1

]
. Then D = P−1AP =

[
−1 0
0 3

]
so

the eigenvalues of A are −1 and 3.

Notice that A−1 =
1

3

[
−1 2
2 −1

]
and D−1 = P−1A−1P =

[
−1 0
0 1/3

]
so the eigen-

values of A−1 are −1 and 1/3.


