]MATH 2240 ROW REDUCED ECHELON FORM

Solving systems of linear equations lies at the heart of linear algebra. In high school we learn to solve
systems in 2 or 3 variables using “elimination” and “substitution” of variables. In order to solve systems
with a large number of variables we need to be more organized. The process of Gauss-Jordan Elimination
gives us a systematic way of solving linear systems.

To solve a system of equations we first drop as many unncessary symbols as possible. This is done by
constructing an augmented matriz.

Example: 26 — y + 3z = -1 2 -1 3 : -1
5y — 6z = 0 B 0 5 —6 : 0
—x + 4z = 7 -1 0 4 7

Manipulating the system of equations corresponds to manipulating rows of the matrix. It turns out
that we only need 3 types of operations to solve any linear system. We call these elementary operations.

Definition: Elementary Row Operations

Effect on the matrix: Effect of the linear system:
. . Interchange equation ¢ and equation j
Type I Swap Row i and Row j (List the equations in a different order.)
Type II Multiply Row i by ¢ where ¢ # 0 Multiply both sides of equation i by a non-

zero scalar ¢
Add ¢ times Row i to Row j where Multiply both sides of equation ¢ by ¢ and

T II1
ype c is any scalar add to equation j

If we can get matrix A from matrix B by performing a series of elementary row operations, then A and
B are called row equivalent matrices.

Example: Type I — swap rows 1 and 3

2 — y + 3z = -1 —x + 4z = 7
5y — 6z = 0 == oy — 6z = 0
—x + 4z = 7 2t — y 4+ 3z = -1
2 -1 3 : -1 RIGR3 -1 0 4 : 7
0 5 -6 0 T 0 5 -6 0
-1 0 4 7 2 -1 3 -1

Example: Type II — scale row 3 by -2

2t — y + 3z = -1 2t — y + 3z = -1
5y — 6z = 0 == oy — 6z = 0
—T + 4z = 7 2x 4+ -8z = -—-14
2 -1 3 : -1 9% R3 2 -1 3 -1
0O 5 -6 : 0 T 0 5 —6 0
-1 0 4 7 2 0 -8 —14

Example: Type III — add 3 times row 3 to row 2

2t — y + 3z = -1 2 — y + 3z = -1
by — 6z = 0 — —3x 5y + 6z = 21
—T + 4z = 7 - + 4z = 7
2 -1 3 : -1 3% R34+ R2 2 -1 3 -1
0O 5 -6 : 0 T -3 5 6 21
-1 0 4 7 -1 0 4 7



It is important to notice several things about these operations. First, they are all reversible (that’s
why we want ¢ # 0 in type II operations) — in fact the inverse of a type X operation is another type
X operation. Next, these operations don’t effect the set of solutions for the system — that is — row
equivalent matrices represent systems with the same set of solutions. Finally, these are row operations —
columns never interact with each other.

Doing operations blindly probably won’t get us anywhere. What we want is to head towards some
shape of equations which will let us read off the set of solutions. Thus the next few defintions.

Definition: A matrix is in row echelon form (or REF) if
e Each non-zero row is above all zero rows — that is — zero rows are “pushed” to the bottom.

e The leading entry of a row is strictly to the right of the leading entries of the rows above.
(The leftmost non-zero entry of a row is called the “leading entry”.)

If in addition...

e Each leading entry is “17.
(Note: Our textbook says this is a requirement of REF.)

e Only zeros appear above (& below) a leading entry of a row.

then a matrix is in reduced row echelon form (or RREF).

Gauss-Jordan Elimination is an “algorithm” which given a matrix returns a row equivalent matrix in
reduced row echelon form.

1. Determine the leftmost non-zero column. This is a pivot column and the topmost entry is a pivot
position. If “0” is in this pivot position, swap (an unignored) row with the topmost row (use a Type
I operation) so that there is a non-zero entry in the pivot position.

2. Add appropriate multiples of the topmost (unignored) row to the rows beneath it so that only “0”
appears below the pivot (use several Type III operations).

3. Ignore the topmost (unignored) row. If any non-zero rows remain, go to step 1.

This part of Gauss-Jordan Elimination is called the forward pass. This part of the process will put
our matrix in row echelon form (in my sense not our textbook’s sense). Now let’s finish Gauss-Jordan
Elimination.

1. If necessary, scale the rightmost unfinished pivot to 1 (use a Type II operation).

2. Add appropriate multiples of the current pivot’s row to rows above it so that only 0 appears above
the current pivot (using several Type III operations).

3. The current pivot is now “finished”. If any unfinished pivots remain, go to step 4.

This part of Gauss-Jordan Elimination is called the backward pass. It should be fairly obvious that this
algorithm will terminate in finitely many steps. Also, only elementary row operations have been used. So
we end up with a row equivalent matrix. A tedious and wordy proof shows that the resulting matrix is in
reduced row echelon form.

o ) T+ 2y - !
Example: Let’s solve the system 3z + 4y = -1
12 1) ERERL g
[3 4 —1] [O -2 —4]

The first non-zero column is just the first column. So the upper left hand corner is a pivot position.
This position already has a non-zero entry so no swap is needed. The type III operation “—3 times row 1



added to row 2” clears the only position below the pivot, so after one operation we have finished with this
pivot and can ignore row 1.
0 -2 —4

Among the (unignored parts of) columns the leftmost non-zero column is the second column. So the
“—27 sits in a pivot position. Since it’s non-zero, no swap is needed. Also, there’s nothing below it, so no
type III operations are necessary. Thus we’re done with this row and we can ignore it.

b %Y

Nothing’s left so we’re done with the forward pass. (1) _22 _1 4 is in row echelon form.

Next, we need to take the rightmost pivot (the “—2”) and scale it to 1 then clear everything above it.
12 ¢ 1] 7MERETp o9 q] 2xB2ERITL g -3
[0 -2 —4] [0 1 2] [0 1 2}

This “finishes” that pivot. The next rightmost pivot is the 1 in the upper left hand corner. But it’s
already scaled to 1 and has nothing above it, so it’s finished as well. That takes care of all of the pivots so
the backward pass is complete leaving our matrix in reduced row echelon form.

Finally, let translate the RREF matrix back into a system of equations. The (new equivalent) system

x = -3

is y = 2 So the only solution for this system is x = —3 and y = 2.

Note: One can also solve a system quite easily once (just) the forward pass is complete. This is done
using “back substitution”. Notice that the system after the forward pass was + _gz i —éll . So
we have —2y = —4 thus y = 2. Substituting this back into the first equation we get z+2(2) = 1soz = —3.

2t - y + 2z = 0
Example: Let’s solve the system = — 2y 4+ 2z = -1
T + z = 1
2 -1 1 : 0 —2xR1+R2 2 -1 1 : 0 *1/2><R1+R3 2 -1 1 : 0 Ignore R1
4 -2 2 : 1 T 0O 0 0 : 1 T 0 O 0o : 1 T
1 0 1 -1 1 0 1 : -1 0 1/2 1/2 : -1
R2<R3 Ignore R2 Ignore R3
0 0 0o : 1 |10 1/2 1/2 2 -1 T T
0 1/2 1/2 : -1 00 0 : 1 0 0 0 : 1
2 -1 1 = 0
which leaves us with nothing. So the forward pass is complete and |0 1/2 1/2 : —1] isin REF.
0 0 0o : 1
2 -1 1 = 0 yuparre |2 -1 1 2 Ofgupe (2 —1 1 0| 1xr2tm1
0 1/2 1/2 : -1 T 0 1/2 1/2 : 0 |0 1 1 :0 T
0 0 0o : 1 0 0 0 : 1 0 0 O 1
2 0 2 0 1/2><R1 1 0 1 0
011 :0 " 011 0
000 :1 000 : 1

This finishes the backward pass and our matrix is now in RREF. Our new system of equations is
x + z =0
y + 2z = 0. Ofcourse 0 # 1, so this is an inconsistant system — it has no solutions.
0 =1
Note: If our only goal was to solve this system, we could have stopped after the very first operation
(row number 2 already said “0 =1").



r + 2y + 3z = 3
Example: Let’s solve the system 4r + Sy + 62 = 9
T + 8y + 9z = 15
123 31 axmiprz [V 2 3 ¢ 3| oxpigmrs [ 2 3 ¢ 3| _oxmetR3
4 5 6 9 T 0 -3 -6 : -3 T 0 -3 -6 : =3 T
789 15 7 8 9 : 15 0 -6 —-12 : -6
1 2 3 . 3 71/3><R2 1 2 3 —2xR24+R1 1 0 -1 : 1
0 -3 -6 : -3 T 01 2 : 1 T 01 2 :1
0o 0 0 : 0 000 :0 00 0 :0
T - z =1
Now our matrix is in RREF. The new system of equations is y + 2z = 1. Thisis new —
0 =0
we don’t have an equation of the form “z = ...” This is because z does not lie in a pivot column. So we

can make z a “free variable.” Let’s relabel it z = ¢t. Then we have x —t =1, y +2t =1, and z = t. So
r=1+4+1t, y=1—2t and z =t is a solution for any choice of ¢. In particular, t =y =1and z =01is a
solution. But so is x =2, y = —1, z = 1. In fact, there are infinitely many solutions.

Note: A system of linear equations will always have either one solution, infinitely many solutions, or
no solution at all.

Multiple Systems: Gauss-Jordan can handle solving multiple systems at once, if these systems share
the same coefficient matrix (the part of the matrix before the :’s).

z + 2y = 3 r + 2y = 3
Suppose we wanted to solve both 4x 4+ 5y = 6 andalso 4xr 4+ 5By = 9 . These lead to the
r 4+ 8y = 9 Tr + 8y = 15
1 2 3 1 2 3
following augmented matrices: (4 5 : 6| and [4 5 9 | . We can combine them together and get
7 8 9 7 8 15
12 :3 3 10 : =11
4 5 : 6 9| which we already know has the RREF of {O 1 @ 2 1| (from the last example —
7 8 9 15 00 : 0 O
10 -1 10 1
only the :’s have moved). This corresponds to the augmented matrices [0 1 2| and |0 1 1f.
00 : 0 0 0 0
These in turn tell us that the first system’s solution is x = —1, y = 2 and the second system’s solution is

r=1and y=1.

This works because we aren’t mixing columns together (all operations are row operations). Also, notice
that the same matrix can be interpreted in a number of ways. Before we had a single system in 3 variables
and now we have 2 systems in 2 variables.

Homework Problems: For each of the following matrices perform Gauss-Jordan elimination. I have
given the result of the performing the forward pass to help verify you’re on the right track. Also, identify
the pivots and pivot columns. Finally, interpret your matrices as a system or collection of systems of
equations and note the corresponding solutions.

2 -4 0 4 2 -4 0 4
Lo — forward pass = [1 o } 1L =20 2 — forward pass = 0 0 1 -2
12 2 0 -8 0 0 1 -2 0 0 0 O
4 -8 1 6 0 0 0 0]
2 1 1 2 1 1 1 -3 0 1 -3 0]
1 2 1| = forward pass = |0 3/2 1/2 2 —6 —-2| = forward pass = [0 0 -2
11 2 0 0 4/3 1 -3 -2 0 0 0]




MATH 2240 THE LINEAR CORRESPONDENCE BETWEEN COLUMNS

It can be extremely useful to notice that if we preform an elementary row operation on A, then the
linear relationships between columns of A will not change.
Specifically... Suppose that a, b, and c are columns of A, and suppose that we perform some row operation
and get A’ whose corresponding columns are a’, b’, and ¢/. Then it turns out that:

rza+yb+2zc=0 if and only if za' +yb ' +2¢/ =0
where x, y, and z are some real numbers.
This also holds for bigger or smaller collections of columns. Why? Essentially, since we are preforming row

operations, the relationships between columns should be unaffected — we aren’t “mixing” the columns
together. For example:

0 1 —1f giope |71 0 =2 9piyps |1 0 =2| _poyps |1 0 =2 jyp (1 0O 2
-1 0 -2 N 0 1 -1 N 0o 1 -1 - 0 1 -1 N 01 -1
2 1 3 2 1 3 o 1 -1 0O 0 O 00 O

Notice in the RREF (on the far right) we have that the final column is 2 times the first column plus —1
times the second column.

1 0 2
210 =1 (1| =1]-1
0 0 0

So this must be true for all of the other matrices as well. In particular, we have that the third column of
the original matrix is 2 times the first column plus —1 times the second column:

0 1 -1
2|1-1] =110 =|-2
2 1 3

Why is this important? Well, first, Gauss-Jordan elimination typically requires a lot of computation. This
correspondence gives you a way to check that you row-reduced correctly! We will see other applications of
this correspondence later in the course.

1 0 —1
Another example: Let A be a 3x3 matrix whose RREF is |0 1 2 |. Suppose that we know the first
00 O
1 2
column of A is [4| and the second is |5|. Then, by the linear correspondence, we know that the third
7 8
1 2 3 1 2 3
column must be —1- (4| +2- |5| = |6]|. Therefore, the mystery matrix is A= |4 5 6
7 8 9 7 8 9

Homework Problems:
1. Verify that the linear correspondence holds between the each matrix, its REF, and its RREF in the
previous homework problems and examples.

1 2 3 10 2
2. I just finished row reducing the matrix [0 1 —1| and got [0 1 —1]|. Something’s wrong. Just
1 5 0 0 0 O

using the linear correspondence explain how I know something’s wrong and then find the real RREF
(without row reducing).

12 0 -1 2 2
3. A mystery matrix has the RREF of |0 0 1 1 3|. The first column of this matrix is [0| and the
000 0 O 1
-1
third column is | 1 |. Find the mystery matrix.
2



