
Math 2240 Eigenhandout

Let V be a vector space over R (or C) such that dim(V ) = n < ∞. Let T : V → V be a linear
transformation (since we are mapping from V to itself, we could refer to T as a linear operator).

Definition: Let v ∈ V such that v 6= 0 and T (v) = λv. Then v is an eigenvector for T with eigenvalue
λ. Moreover, we say that λ ∈ R (or C) is an eigenvalue for T if T has an eigenvector with eigenvalue λ.

Note: While 0 can be an eigenvalue, 0 is not allowed to be an eigenvector. Otherwise, since T (0) = 0 =
λ0, we would have that every scalar is an eigenvalue of T and 0 would have every scalar as its eigenvalue!

Definition: Let f(t) = det(T − tI). Then f(t) is called the characteristic polynomial of T .1

Note: λ is an eigenvalue of T ⇔ there exists an non-zero vector v such that T (v) = λv ⇔ there exists
a non-zero vector v such that (T − λI)(v) = 0 ⇔ Ker(T − λI) 6= {0} ⇔ T − λI is not 1-1 ⇔ T − λI is
not invertible ⇔ det(T − λI) 6= 0. We have just proved...

Theorem: λ is an eigenvalue of T if and only if λ is a root of the characteristic polynomial of T (that is
f(λ) = det(T − λI) = 0).

Facts: Let f(t) be the characteristic polynomial of T . Then f(t) is a polynomial of degree n whose leading
coefficient is (−1)n. In addition, f(0) = det(T ) (the constant term is just the determinant of T ). Also, the
coefficient of tn−1 in f(t) is (−1)n−1tr(T ) (i.e., ± the trace of T ).

Definition: Factor T ’s characteristic polynomial (over C): f(t) = (−1)n(t − λ1)
m1(t − λ2)

m2 · · · (t −
λk)

mk (where λi 6= λj for i 6= j and mi > 0). Then the roots of f(t) (i.e. the eigenvalues of T ) are
λ1, . . . , λk. We say that the algebraic multiplicity of λi is mi (the number of factors (t − λi) appearing
in the characteristic polynomial). Notice that the sum of the algebraic multiplicities is n = dim(V ) (the
degree of the characteristic polynomial).
Technical note: More accurately, if we are working over R, the non-real roots are not actually eigenvalues.

Definition: Let Eλ = Ker(T − λI) = {v ∈ V | (T − λI)(v) = 0} = {v ∈ V | T (v) = λv} = {0} ∪ {v ∈
V |v is an eigenvector of T with eigenvalue λ}. If Eλ 6= {0} (i.e., λ is an eigenvalue), then we call Eλ an
eigenspace of T . Notice that Eλ is a subspace of V (since it is the kernel of a linear transformation).

Definition: dim(Eλ) = dim(Ker(T −λI)) = nullity(T −λI) is called the geometric multiplicity of λ. This
is the number of linearly independent eigenvectors with eigenvalue λ. Notice that if λ is an eigenvalue then
Eλ cannot be the zero subspace. Thus geometric multiplicities of eigenvalues are always at least 1.

Theorem: Let λ be an eigenvalue of T with algebraic mult. m and geometric mult. g. Then 1 ≤ g ≤ m.

Theorem: Eigenvectors with different eigenvalues are linearly independent. Moreover, if Si is a linearly
independent set of eigenvectors with eigenvalue λi and λi 6= λj for i 6= j, then S1 ∪̇S2 ∪̇ · · · ∪̇Sk is a linearly
independent set.

Definition: T is diagonalizable if there is a basis for V consisting of eigenvectors for T . Notice if β is such
a basis, then [T ]β is a diagonal matrix!

Corollary: T is diagonalizable (over R) if and only if the eigenvalues of T all belong to R (i.e. the
characteristic polynomial completely factors over R) and the geometric and algebraic multiplicities of each
eigenvalue match.

1This is the definition in Lay. Other texts define g(t) = det(tI − T ) to be the characteristic polynomial. Notice that
f(t) = (−1)ng(t) where n = dim(V ). So for even sized matrices f = g and for odd sized matrices f = −g.


