Math 2240

Homework #1 Be sure to show your work!

Notes:

- This first homework is rather short. The next two homeworks will be longer. I don't plan on weighting each homework equally.
- You can copy/paste my sample code into Maple. However, if you would prefer to do computations using different software, that is ok. Make sure you turn in *all* of your work (including computer code).
- If you end up doing the entire assignment in Maple, feel free to turn in a Maple worksheet (.mw file) instead of a pdf.
- Don't try to do this stuff in a calculator or by hand. A calculator is a poor choice since I want *exact* answers not decimal approximations.

1. Basic matrix operations.

```
restart;
with(LinearAlgebra):
A := <<1|2|3|4|5>,<6|7|8|9|10>,<11|12|13|14|15>,<16|17|18|19|20>,<21|22|23|24|25>>;
B := <<1,0,1,0,1>|<0,-1,0,-1,0>|<1,1,1,1,1>|<-1,-1,-1,-1>|<5,4,3,2,1>>;
```

This will result in...

	1	2	3	4	5			1	0	1	$^{-1}$	5	
	6	7	8	9	10			0	-1	1	-1	4	
A :=	11	12	13	14	15	and	B :=	1	0	1	-1	3	
	16	17	18	19	20			0	$^{-1}$	1	-1	2	
	21	22	23	25	25			1	0	1	-1	1	

Notice that in Maple, matrices are either entered row by row or column by column. The "—" (pipe = shift + $\)$ moves over a column and "," (comma) moves down a row.

(a) Compute $(AB)^5 \left((6I_5 - B)^{-2} \right)^T$ where I_5 is the 5 × 5 identity matrix.

(b) Compute the reduced row echelon form of B.

2. Consider the follow linear system:

		$-3x_{2}$	+	x_3	+	x_4	_	$2x_5$	=	-1
$2x_1$	+	x_2	+	$2x_3$	+	x_4	+	x_5	=	0
x_1			+	$3x_3$			+	x_5	=	6
		$4x_2$	+	$2x_3$	—	x_4	+	$4x_5$	=	-5
$-2x_1$	+	x_2	+	x_3	_	x_4	+	$2x_5$	=	2

Here's code for creating a vector \mathbf{x} of variables (I'll include the code to wide memory and load the linear algebra package as well):

```
restart;
with(LinearAlgebra):
X := <x[1],x[2],x[3],x[4],x[5]>;
```

Note that my vector of variables is a capital X not lowercase.

- (a) Define the coefficient matrix A and a constant vector **b** corresponding to the above system. Then use the command "A.X=b;" to display the system.
- (b) Create an augmented matrix: [A : b] and solve the system by finding its RREF. Note: As long as sizes are compatible, Maple can create a new matrix from matrix blocks. For example: "<A|B>" slaps B next to A and "<A,B>" puts B below A.
- (c) It turns out that A is invertible. Solve this system, $A\mathbf{x} = \mathbf{b}$, again using the inverse of A.