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28.

Show that the space C(R) of all continuous functions defined
on the real line is an infinite-dimensional space.

In Exercises 29 and 30, V is a nonzero finite-dimensional vector
space, and the vectors listed belong to V. Mark each statement
True or False. Justify each answer. (These questions are more
difficult than those in Exercises 19 and 20.)

29.

30.

a. If there exists a set {vi,..
dimV < p.

.,Vp} that spans V, then

b. If there exists a linearly independent set {vi, ..
V,then dim V > p.

c. If dimV = p, then there exists a spanning set of p + 1
vectors in V.

., Vp}in

a. If there exists a linearly dependent set {v, ..
thendim V < p.

L VppinV,

b. If every set of p elements in V' fails to span V/, then
dimV > p.

c. If p>2anddimV = p,thenevery set of p — 1 nonzero
vectors is linearly independent.

Exercises 31 and 32 concern finite-dimensional vector spaces V'
and W and a linear transformation 7 : V. — W.

31.

32.

Let H be a nonzero subspace of V', and let T'(H ) be the set of
images of vectors in H. Then T'(H) is a subspace of W, by
Exercise 35 in Section 4.2. Prove that dim 7 (H) < dim H.

Let H be a nonzero subspace of V, and suppose T is
a one-to-one (linear) mapping of V' into W. Prove that
dim7(H) = dim H. If T happens to be a one-to-one map-
ping of V onto W, then dim V' = dim W . Isomorphic finite-
dimensional vector spaces have the same dimension.

33.

34.

[M] According to Theorem 11, a linearly independent set
{Vi,...,vi} in R” can be expanded to a basis for R”. One
waytodothisistocreate A = [v; -+ vi € e, ],
with ey, ..., e, the columns of the identity matrix; the pivot
columns of A form a basis for R”.

a. Use the method described to extend the following vectors
to a basis for R*:

-9 9 6

=7 4 7

V) = 8 1, V) = 1 V3 = —8
-5 6 5

7 =7 =7

b. Explain why the method works in general: Why are the
original vectors vy, ..., v included in the basis found for
Col A? Why is Col 4 = R"?

[M] Let B = {1,cost,cos’t,...,cos®t} and C = {1, cos?,

cos2t,...,cos6t}. Assume the following trigonometric

identities (see Exercise 37 in Section 4.1).

cos2t = —1 + 2cos?¢

cos3t = —3cost + 4cos’t

cos4t =1 —8cos?t + 8cos*t

cos 5t = 5cost —20cos*t + 16cos’ t

cos6f = —1 + 18cos’t — 48 cos*t 4 32 cos®¢

Let H be the subspace of functions spanned by the functions
in B. Then B is a basis for H, by Exercise 38 in Section 4.3.

a. Write the B-coordinate vectors of the vectors in C, and
use them to show that C is a linearly independent set in
H.

b. Explain why C is a basis for H.

SOLUTIONS TO PRACTICE PROBLEMS

1. False. Consider the set {0}.

2. True. By the Spanning Set Theorem, S contains a basis for V; call that basis S’.
Then T will contain more vectors than S’. By Theorem 9, T is linearly dependent.

4.6 RANK

With the aid of vector space concepts, this section takes a look inside a matrix and
reveals several interesting and useful relationships hidden in its rows and columns.
For instance, imagine placing 2000 random numbers into a 40 x 50 matrix A and
then determining both the maximum number of linearly independent columns in 4 and
the maximum number of linearly independent columns in A7 (rows in A). Remarkably,
the two numbers are the same. As we’ll soon see, their common value is the rank of the
matrix. To explain why, we need to examine the subspace spanned by the rows of A.
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The Row Space

If A is an m x n matrix, each row of A has n entries and thus can be identified with a
vector in R”. The set of all linear combinations of the row vectors is called the row
space of A and is denoted by Row A. Each row has n entries, so Row A is a subspace
of R”. Since the rows of A are identified with the columns of A7, we could also write
Col AT in place of Row A.

EXAMPLE 1 Let
r = (-2.-5,8,0,—17)

-2 -5 8 0 —17
1 3 -5 1 5 r; =(1,3,-5,1,5)
A= and
31 =19 7 1 r; = (3,11,-19,7,1)
1 7 -13 5 =3

ry=(1,7.-13,5,-3)

The row space of A is the subspace of R> spanned by {r;,r;,r3,1r4}. Thatis, Row A =
Span {r, r,,r3,ry}. It is natural to write row vectors horizontally; however, they may
also be written as column vectors if that is more convenient. [ |

If we knew some linear dependence relations among the rows of matrix A in
Example 1, we could use the Spanning Set Theorem to shrink the spanning set to a
basis. Unfortunately, row operations on A will not give us that information, because
row operations change the row-dependence relations. But row reducing A is certainly
worthwhile, as the next theorem shows!

If two matrices A and B are row equivalent, then their row spaces are the same.
If B is in echelon form, the nonzero rows of B form a basis for the row space of
A as well as for that of B.

PROOF If B is obtained from A by row operations, the rows of B are linear com-
binations of the rows of A. It follows that any linear combination of the rows of B
is automatically a linear combination of the rows of A. Thus the row space of B is
contained in the row space of A. Since row operations are reversible, the same argument
shows that the row space of A is a subset of the row space of B. So the two row spaces
are the same. If B is in echelon form, its nonzero rows are linearly independent because
no nonzero row is a linear combination of the nonzero rows below it. (Apply Theorem
4 to the nonzero rows of B in reverse order, with the first row last.) Thus the nonzero
rows of B form a basis of the (common) row space of B and A. [ |

The main result of this section involves the three spaces: Row A, Col A, and Nul A.
The following example prepares the way for this result and shows how one sequence of
row operations on A leads to bases for all three spaces.

EXAMPLE 2 Find bases for the row space, the column space, and the null space of

the matrix

-2 =5 8§ 0 —17
1 3 =5 1 5
3 11 —-19 7 1
1 7 —-13 5 =3

A=
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SOLUTION To find bases for the row space and the column space, row reduce A4 to an
echelon form:

1 3 -5 1 5
0 1 -2 2 -7
A~B=140 0 0 -4 20
0 0 0 0 0

By Theorem 13, the first three rows of B form a basis for the row space of A (as well
as for the row space of B). Thus

Basis for Row A4: {(1,3,-5,1,5),(0,1,-2,2,-7),(0,0,0,—4,20)}

For the column space, observe from B that the pivots are in columns 1, 2, and 4. Hence
columns 1, 2, and 4 of A (not B) form a basis for Col A:

-2 -5 0

. ) 1 3 1
Basis for Col A: AU ETRHE
1 7 5

Notice that any echelon form of A provides (in its nonzero rows) a basis for Row 4
and also identifies the pivot columns of A for Col A. However, for Nul 4, we need the
reduced echelon form. Further row operations on B yield

1 0 1 0 1
o 1 -2 0 3
A~B~C=14 06 o 1 =5
0o o0 O o0 O
The equation Ax = 0 is equivalent to Cx = 0, that is,
X + X3 + X5 = 0
Xy — 2X3 + 3X5 =0
X4 — 5X5 =0
So x; = —x3 — x5, X2 = 2x3 — 3X5, X4 = 5x5, with x3 and x5 free variables. The usual

calculations (discussed in Section 4.2) show that

-1 -1

2 -3

Basis for Nul 4: 1|, 0
0 5

0 1

Observe that, unlike the basis for Col A, the bases for Row A and Nul A4 have no simple
connection with the entries in A itself.! [ |

1t is possible to find a basis for the row space Row A that uses rows of A. First form A7, and then row
reduce until the pivot columns of A7 are found. These pivot columns of AT are rows of A, and they form
a basis for the row space of A.
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Warning: Although the first three rows of B in Example 2 are linearly independent,
it is wrong to conclude that the first three rows of A are linearly independent. (In fact,
the third row of A is 2 times the first row plus 7 times the second row.) Row operations
may change the linear dependence relations among the rows of a matrix.

The Rank Theorem

The next theorem describes fundamental relations among the dimensions of Col A4,
Row A, and Nul A.

The rank of A is the dimension of the column space of A.

Since Row A is the same as Col AT, the dimension of the row space of A is the rank
of AT, The dimension of the null space is sometimes called the nullity of 4, though we
will not use this term.

An alert reader may have already discovered part or all of the next theorem while
working the exercises in Section 4.5 or reading Example 2 above.

The Rank Theorem

The dimensions of the column space and the row space of an m X n matrix 4 are
equal. This common dimension, the rank of A, also equals the number of pivot
positions in A and satisfies the equation

rank A + dimNul A = n

PROOF By Theorem 6 in Section 4.3, rank A is the number of pivot columns in A.
Equivalently, rank A is the number of pivot positions in an echelon form B of A.
Furthermore, since B has a nonzero row for each pivot, and since these rows form a
basis for the row space of A, the rank of A is also the dimension of the row space.

From Section 4.5, the dimension of Nul A equals the number of free variables in
the equation Ax = 0. Expressed another way, the dimension of Nul A4 is the number of
columns of A that are not pivot columns. (It is the number of these columns, not the
columns themselves, that is related to Nul A.) Obviously,

number of number of __ | number of
pivot columns nonpivot columns | ~ | columns

This proves the theorem. n

The ideas behind Theorem 14 are visible in the calculations in Example 2. The
three pivot positions in the echelon form B determine the basic variables and identify
the basis vectors for Col 4 and those for Row A.

EXAMPLE 3

a. If Ais a7 x 9 matrix with a two-dimensional null space, what is the rank of A?

b. Could a 6 x 9 matrix have a two-dimensional null space?
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SOLUTION
a. Since A has 9 columns, (rank A) + 2 = 9, and hence rank A = 7.

b. No. If a 6 x 9 matrix, call it B, had a two-dimensional null space, it would have to
have rank 7, by the Rank Theorem. But the columns of B are vectors in R®, and so
the dimension of Col B cannot exceed 6; that is, rank B cannot exceed 6. |

The next example provides a nice way to visualize the subspaces we have been
studying. In Chapter 6, we will learn that Row A and Nul A have only the zero vector
in common and are actually “perpendicular” to each other. The same fact will apply
to Row A7 (= Col A) and Nul A”. So Fig. 1, which accompanies Example 4, creates
a good mental image for the general case. (The value of studying A” along with A is
demonstrated in Exercise 29.)

30 —1
EXAMPLE 4 TLetA=|3 0 —1 |. Itis readily checked that Nul 4 is the x,-
4 0 5

axis, Row A is the x;x3-plane, Col A4 is the plane whose equation is x; — x, = 0, and
Nul A7 is the set of all multiples of (1, —1,0). Figure 1 shows Nul A and Row 4 in
the domain of the linear transformation x — Ax; the range of this mapping, Col A, is
shown in a separate copy of R?, along with Nul A7 [

~ / -
\

0 S,
; N S

A "
Q
go" olq

R3 X R3

S

FIGURE 1 Subspaces determined by a matrix A.

Applications to Systems of Equations

The Rank Theorem is a powerful tool for processing information about systems of
linear equations. The next example simulates the way a real-life problem using linear
equations might be stated, without explicit mention of linear algebra terms such as
matrix, subspace, and dimension.

EXAMPLE 5 A scientist has found two solutions to a homogeneous system of
40 equations in 42 variables. The two solutions are not multiples, and all other solutions
can be constructed by adding together appropriate multiples of these two solutions.
Can the scientist be certain that an associated nonhomogeneous system (with the same
coefficients) has a solution?

SOLUTION Yes. Let A be the 40 x 42 coefficient matrix of the system. The given
information implies that the two solutions are linearly independent and span Nul A. So
dimNul A = 2. By the Rank Theorem, dimCol A = 42 — 2 = 40. Since R* is the
only subspace of R* whose dimension is 40, Col A must be all of R*’. This means that
every nonhomogeneous equation Ax = b has a solution. [ |
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Rank and the Invertible Matrix Theorem

The various vector space concepts associated with a matrix provide several more
statements for the Invertible Matrix Theorem. The new statements listed here follow
those in the original Invertible Matrix Theorem in Section 2.3.

The Invertible Matrix Theorem (continued)

Let A be an n x n matrix. Then the following statements are each equivalent to
the statement that A is an invertible matrix.

m. The columns of A form a basis of R”.

ColA =R”

dimCol A =n

rank A =n

Nul 4 = {0}

dimNul4 =0

2 T o B

PROOF Statement (m) is logically equivalent to statements (e) and (h) regarding linear
independence and spanning. The other five statements are linked to the earlier ones of
the theorem by the following chain of almost trivial implications:

(8= M) = ()= (= =@ =

Statement (g), which says that the equation Ax = b has at least one solution for each b in
R", implies (n), because Col 4 is precisely the set of all b such that the equation Ax = b
is consistent. The implications (n) = (0) = (p) follow from the definitions of dimension
and rank. If the rank of A is n, the number of columns of A, then dim Nul A = 0, by the
Rank Theorem, and so Nul A = {0}. Thus (p) = (r) = (q). Also, (q) implies that the
equation Ax = 0 has only the trivial solution, which is statement (d). Since statements
(d) and (g) are already known to be equivalent to the statement that A is invertible, the
proof is complete. [ |

We have refrained from adding to the Invertible Matrix Theorem obvious state-
ments about the row space of A, because the row space is the column space of A7.
Recall from statement (1) of the Invertible Matrix Theorem that A is invertible if and
only if AT is invertible. Hence every statement in the Invertible Matrix Theorem can
also be stated for A7. To do so would double the length of the theorem and produce a
list of over 30 statements!
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4.6

WEB

— NUMERICAL NOTE

Many algorithms discussed in this text are useful for understanding concepts
and making simple computations by hand. However, the algorithms are often
unsuitable for large-scale problems in real life.

Rank determination is a good example. It would seem easy to reduce a matrix
to echelon form and count the pivots. But unless exact arithmetic is performed
on a matrix whose entries are specified exactly, row operations can change the

. . . . |5 7
apparent rank of a matrix. For instance, if the value of x in the matrix |: 5y ]

is not stored exactly as 7 in a computer, then the rank may be 1 or 2, depending
on whether the computer treats x — 7 as zero.

In practical applications, the effective rank of a matrix A4 is often determined
from the singular value decomposition of A, to be discussed in Section 7.4. This
decomposition is also a reliable source of bases for Col A, Row 4, Nul A4, and
Nul AT,

EXERCISES

PRACTICE PROBLEMS

The matrices below are row equivalent.

= W N -

2 -1 1 -6 8 1 -2 —4 3 -2

4= 1 -2 —4 3 -2 B— 0 3 9 —-12 12
-7 8 10 3 —-10 | 0 0 O 0 0

4 =5 -7 0 4 0 0 O 0 0

Find rank A and dim Nul 4.
Find bases for Col 4 and Row A.
What is the next step to perform to find a basis for Nul A?

How many pivot columns are in a row echelon form of A7?

In Exercises 1-4, assume that the matrix A is row equivalent to B. 2 6
Without calculations, list rank 4 and dim Nul A. Then find bases 3,

for Col 4, Row A, and Nul A.

1

1. A= -1
)

1
B=1]0
L 0

1

2

2. A= 3
|3

1

0

B= 0
L0

—4

O OO W OOV W

S W

OO = ph O WA B

9 —7
—4 1,
10 7

-1 2
0 -3
6 -3
9 0|

1 27

11
0 -5
0 0

-6 6 3 6
4|23 6 -3 0 —6
4 9 —-12 9 3 12]
2 3 6 3 3 -6
(2 6 6 6 3 6]
p_l0 3 0 3 3 0
0 0 0 0 3 0
L0 0 0 0 0 o0
(11 -2 0 1 —27
1 2 -3 0 -2 -3
4. 4={1 -1 0 0 1 6|,
1 -2 2 1 =3 0
12 1 0 2 -1
11 =2 0 1 -2
0 1 -1 0 -3 -1
B=|0 0 1 1 —-13 -1
0o 0 0 0 1 -1
(0 0 0 0 0 1




10.

11.

12.

13.

14.

15.

16.

In Exercises 17 and 18, A is an m X n matrix.

If a 4 x 7 matrix A has rank 3, find dim Nul 4, dim Row A4,
and rank AT .

If a 7 x 5 matrix A has rank 2, find dim Nul 4, dim Row A,
and rank A7 .

Suppose a 4 x 7 matrix A has four pivot columns. Is
Col A = R*? Is Nul A = R3? Explain your answers.

Suppose a 6 x 8 matrix A has four pivot columns. What is
dim Nul 4? Is Col A = R*? Why or why not?

If the null space of a 4 x 6 matrix A4 is 3-dimensional, what
is the dimension of the column space of A? Is Col A = R3?
Why or why not?

If the null space of an 8 x 7 matrix A4 is 5-dimensional, what
is the dimension of the column space of A?

If the null space of an 8 x 5 matrix A is 3-dimensional, what
is the dimension of the row space of 4?

If the null space of a 5 x 4 matrix A is 2-dimensional, what
is the dimension of the row space of 4?

If Ais a7 x 5 matrix, what is the largest possible rank of A?
If Ais a5 x 7 matrix, what is the largest possible rank of A?
Explain your answers.

If Ais a5 x 4 matrix, what is the largest possible dimension
of the row space of A? If A is a 4 x 5 matrix, what is the
largest possible dimension of the row space of A? Explain.

If Ais a3 x 7 matrix, what is the smallest possible dimension
of Nul A?

If Aisa7 x 5 matrix, what is the smallest possible dimension
of Nul A?

Mark each

statement True or False. Justify each answer.

17.

18.

a. The row space of A is the same as the column space of
AT.
b. If B is any echelon form of 4, and if B has three nonzero

rows, then the first three rows of A form a basis for
Row A.

c. The dimensions of the row space and the column space
of A are the same, even if A4 is not square.

d. The sum of the dimensions of the row space and the null
space of A equals the number of rows in A.

e. On a computer, row operations can change the apparent
rank of a matrix.

a. If B is any echelon form of A, then the pivot columns of
B form a basis for the column space of A.

b. Row operations preserve the linear dependence relations
among the rows of A.

c. The dimension of the null space of A4 is the number of
columns of A that are not pivot columns.

d. The row space of A” is the same as the column space of
A.

19.

20.

21.

22,

23.

24.

25.

26.
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e. If A and B are row equivalent, then their row spaces are
the same.

Suppose the solutions of a homogeneous system of five linear
equations in six unknowns are all multiples of one nonzero
solution. Will the system necessarily have a solution for
every possible choice of constants on the right sides of the
equations? Explain.

Suppose a nonhomogeneous system of six linear equations
in eight unknowns has a solution, with two free variables. Is
it possible to change some constants on the equations’ right
sides to make the new system inconsistent? Explain.

Suppose a nonhomogeneous system of nine linear equations
in ten unknowns has a solution for all possible constants on
the right sides of the equations. Is it possible to find two
nonzero solutions of the associated homogeneous system that
are not multiples of each other? Discuss.

Is is possible that all solutions of a homogeneous system of
ten linear equations in twelve variables are multiples of one
fixed nonzero solution? Discuss.

A homogeneous system of twelve linear equations in eight
unknowns has two fixed solutions that are not multiples of
each other, and all other solutions are linear combinations of
these two solutions. Can the set of all solutions be described
with fewer than twelve homogeneous linear equations? If so,
how many? Discuss.

Is it possible for a nonhomogeneous system of seven equa-
tions in six unknowns to have a unique solution for some
right-hand side of constants? Is it possible for such a system
to have a unique solution for every right-hand side? Explain.

A scientist solves a nonhomogeneous system of ten linear
equations in twelve unknowns and finds that three of the
unknowns are free variables. Can the scientist be certain
that, if the right sides of the equations are changed, the new
nonhomogeneous system will have a solution? Discuss.

In statistical theory, a common requirement is that a matrix
be of full rank. That is, the rank should be as large as
possible. Explain why an m x n matrix with more rows than
columns has full rank if and only if its columns are linearly
independent.

Exercises 27-29 concern an m x n matrix A and what are often
called the fundamental subspaces determined by A.

217.

28.

29.

Which of the subspaces Row A, Col A, Nul A, Row AT,
Col AT, and Nul A" are in R and which are in R”? How
many distinct subspaces are in this list?

Justify the following equalities:

a. dimRow A + dimNul A = n Number of columns of A
b. dimCol A + dimNul A” = m Number of rows of 4
Use Exercise 28 to explain why the equation Ax = b has a

solution for all b in R if and only if the equation A”x = 0
has only the trivial solution.
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30. Suppose A is m xn and b is in R™. What has to be true
about the two numbers rank [ A b ] and rank A in order for
the equation Ax = b to be consistent?

Rank 1 matrices are important in some computer algorithms and
several theoretical contexts, including the singular value decom-
position in Chapter 7. It can be shown that an m x n matrix A
has rank 1 if and only if it is an outer product; that is, A = uv’
for some uin R” and v in R". Exercises 31-33 suggest why this
property is true.

2 a
31. Verify that rankuv” < 1lifu=| -3 [andv= | b
5 c

N B . 1 -3 4]

32. Letu = [2].Flndv1nR suchthat|:2 _6 8] =uv’.

33. Let A be any 2 x 3 matrix such that rank A = 1, let u be the
first column of A, and suppose u # 0. Explain why there
is a vector v in R? such that 4 = uv’. How could this
construction be modified if the first column of A were zero?

34. Let Abe anm x n matrix of rank » > 0 and let U be an eche-
lon form of A. Explain why there exists an invertible matrix
E such that A = EU, and use this factorization to write A
as the sum of r rank 1 matrices. [Hint: See Theorem 10 in
Section 2.4.]

7 -9 -4 5 3
-4 6 7 -2 -6 -5
35. [M] Let A = 5 -7 -6 5 —6 2
-3 5 8§ —1 -7 —4
6 -8 —5 4 4 9
a. Construct matrices C and N whose columns are bases for
Col A and Nul A, respectively, and construct a matrix R
whose rows form a basis for Row A.

W oo 0 W

b. Construct a matrix M whose columns form a ba-
sis for Nul A7, form the matrices S = [RT N ] and
T=[C M], and explain why S and T should be
square. Verify that both S and T are invertible.

36. [M] Repeat Exercise 35 for a random integer-valued 6 x 7
matrix A whose rank is at most 4. One way to make A
is to create a random integer-valued 6 x 4 matrix J and a
random integer-valued 4 x 7 matrix K, and set 4 = JK.
(See Supplementary Exercise 12 at the end of the chapter;
and see the Study Guide for matrix-generating programs.)

37. [M] Let A be the matrix in Exercise 35. Construct a matrix
C whose columns are the pivot columns of A, and construct
a matrix R whose rows are the nonzero rows of the reduced
echelon form of A. Compute CR, and discuss what you see.

38. [M] Repeat Exercise 37 for three random integer-valued
5 x 7 matrices A whose ranks are 5, 4, and 3. Make a
conjecture about how CR is related to A for any matrix A.
Prove your conjecture.

SOLUTIONS TO PRACTICE PROBLEMS

1. A has two pivot columns, so rank A = 2. Since A has 5 columns altogether,

dimNul4A =5-2=3.

2. The pivot columns of A are the first two columns. So a basis for Col 4 is

-1

-2
{aj, a} =

=5

The nonzero rows of B form a basis for Row A4, namely, {(1,—-2,—4,3,-2),
(0,3,9,—12,12)}. In this particular example, it happens that any two rows of A
form a basis for the row space, because the row space is two-dimensional and none
of the rows of A is a multiple of another row. In general, the nonzero rows of an
echelon form of A should be used as a basis for Row A, not the rows of A itself.

3. For Nul A4, the next step is to perform row operations on B to obtain the reduced

echelon form of A.

Major Review of Key

Concepts 4-22 two pivot positions.

4. Rank A7 = rank A, by the Rank Theorem, because Col A” = Row A. So AT has



A36 Answers to Odd-Numbered Exercises

27. Hint: Use the fact that each P, is a subspace of P.

29. Justify each answer.
a. True b. True c. True

31. Hint: Since H is a nonzero subspace of a finite-dimensional
space, H is finite-dimensional and has a basis, say,
Vi,...,Vp. First show that {T'(v,),...,T(v,)} spans T'(H).

33. [M] a. One basis is {Vy, V2, V3, €, e3}. In fact, any two of
the vectors ey, . . ., es will extend {v{, v, v3} to a basis of
R°.
Section 4.6, page 236
1. rank A = 2; dimNul 4 = 2;

1 —4
Basis for Col 4: | —1 |, 2
| 5 -6
Basis for Row 4: (1,0, -1, 5), (0,—-2,5,—6)
1 -5
Basis for Nul A: 5/2 s -3
1 0
0 1
3. rank A = 3;dimNul 4 = 3;
M 2 6 3
. -2 -3 0
Basis for Col A4: 4| 90| 3
| —2 3 3

Basis for Row 4: (2,6,—6,6,3,6), (0,3,0,3,3,0),
(0,0,0,0,3,0)

|
w

Basis for Nul A4:

SO O = O W
—_ O O O O

5. 4,3,3

7. Yes; no. Since Col A4 is a four-dimensional subspace of R*,
it coincides with R*. The null space cannot be R?, because
the vectors in Nul 4 have 7 entries. Nul 4 is a
three-dimensional subspace of R7, by the Rank Theorem.

9. 3, no. Notice that the columns of a 4 x 6 matrix are in R*,
rather than R3. Col A is a three-dimensional subspace of
R*.

11. 2

13. 5, 5. In both cases, the number of pivots cannot exceed the
number of columns or the number of rows.

15. 4 17. See the Study Guide.

19. Yes. Try to write an explanation before you consult the
Study Guide.

21. No. Explain why.

23. Yes. Only six homogeneous linear equations are necessary.

25.
27.

29.

31.

33.

35.

37.

No. Explain why.

Row A4 and Nul A4 are in R”; Col A4 and Nul A" are in R™.
There are only four distinct subspaces because
Row A7 = Col A and Col A” = Row A.

Recall that dim Col A = m precisely when Col A = R", or
equivalently, when the equation Ax = b is consistent for all
b. By Exercise 28(b), dim Col A = m precisely when
dimNul A7 = 0, or equivalently, when the equation

ATx = 0 has only the trivial solution.

2a 2b 2¢
uv/ = | —3a —3b —3c |. The columns are all
5a 5b 5¢

multiples of u, so Coluv” is one-dimensional, unless
a=b=c=0.

Hint: Let A=[u u, u;]. Ifu#0,thenuis a basis for
Col A. Why?

[M] Hint: See Exercise 28 and the remarks before Example
4,

[M] The matrices C and R given for Exercise 35 work
here, and A = CR.

Section 4.7, page 242

1.

3.

11.

13.

15.

17.

6 9 [0
a. 2 4 ] b. 2 ]
(ii)
i — 0 8
a -1 1 1 b. | 2
L 1 =2 | 2
P _ (-3 1 ] P _ [—2 1 :|
C=B -5 2| B<cC -5 3
P _ [2 3i| P _ l[ 1 3]
C<B 0o —11/ B<C 210 =2
See the Study Guide.
1 30 5
Lo=1-2 =5 2|, Fl+2s=| -2
. 1 4 3 1

a. Bisabasis for V.

b. The coordinate mapping is a linear transformation.
c. The product of a matrix and a vector

d

. The coordinate vector of v relative to B

a. [M]

32 0 16 0 12 0 107

32 0 24 0 20 0

X 6 0 16 0 15

Pl = — 8 0 10 0

32 4 0 6

2 0
- 1 -




