The Sequences $\langle (-1)^n \rangle$ and $\langle \sin(n) \rangle$ Diverge

THEOREM $\langle (-1)^n \rangle$ diverges

Proof:

Suppose $(-1)^n \to L$. Let $\epsilon = 1/2 > 0$. There exists some $N \ge 0$ such that

$$|(-1)^n - L| < 1/2 \qquad \text{for all} \qquad n \ge N.$$

In particular, n = 2N and n = 2N + 1 are both bigger than N so

$$|(-1)^{2N} - L| = |1 - L| < 1/2$$
 and $|(-1)^{2N+1} - L| = |-1 - L| = |1 + L| < 1/2$.

Suppose that $L \ge 0$. Then $|L+1| = 1 + L \ge 1$, but |1+L| < 1/2. Therefore, it cannot be the case that $L \ge 0$. Thus we must have that L < 0. This means that -L > 0 and so |1-L| = 1 - L > 1, but |1-L| < 1/2. Therefore, L < 0 is impossible as well. Thus L must not exist. In other words, the sequence diverges.

This argument can be modified to show that $\langle \sin(n) \rangle$ diverges. The idea is that we if we go down the sequence far enough, we can hit values above 1/2 and below -1/2. So the same argument (with a little finesse) will work.

Theorem $\langle \sin(n) \rangle$ diverges

Proof:

Suppose that $\sin(n) \to L$. Let $\epsilon = 1/4 > 0$. There exists some $N \ge 0$ such that

$$|\sin(n) - L| < 1/4$$
 for all $n \ge N$

. Now let's pick out values for n such that $n \ge N$ and n is as close to $\pi/2 + 2\pi k$ and $3\pi/2 + 2\pi k$ as possible (this is where sin takes on values 1 and -1 respectively). Consider

$$N_1 = \lceil \pi/2 + 2\pi N \rceil \ge \pi/2 + 2\pi N > N$$
 and $N_2 = \lceil 3\pi/2 + 2\pi N \rceil \ge 3\pi/2 + 2\pi N > N$

where $\lceil x \rceil$ is the closest integer k such that $k \geq x$ (the "ceiling" function). Notice that $\lceil x \rceil = x + \ell$ for some $0 \leq \ell < 1$. In particular, let $N_1 = \pi/2 + 2\pi N + \ell_1$ and $N_2 = 3\pi/2 + 2\pi N + \ell_2$ where $0 \leq \ell_1, \ell_2 < 1$.

Now $\sin(n)$ decreases on the interval $[\pi/2 + 2\pi N, 3\pi/2 + 2\pi N]$ and increases on the interval $[3\pi/2 + 2\pi N, 5\pi/2 + 2\pi N]$. Thus

$$\sin(N_1) = \sin(\pi/2 + 2\pi N + \ell_1) > \sin(\pi/2 + 2\pi N + 1) = \sin(\pi/2 + 1) \approx 0.54 > 0.5$$

and

$$\sin(N_2) = \sin(3\pi/2 + 2\pi N + \ell_2) < \sin(3\pi/2 + 2\pi N + 1) = \sin(3\pi/2 + 1) \approx -0.54 < -0.5$$

Finally, recalling $N_1, N_2 \ge N$ and that $|\sin(n) - L| < 1/4$ for all $n \ge N$, we have that

$$|\sin(N_1) - L| < 1/4$$
 and $|\sin(N_2) - L| < 1/4$

Suppose that $L \ge 0$. This means that $|\sin(N_2) - L| = -(\sin(N_2) - L) = L - \sin(N_2) > L + 0.5 \ge 0.5$ since $\sin(N_2) < -0.5$. But this is impossible since $|\sin(N_2) - L| < 0.25$. Therefore, it cannot be the case that $L \ge 0$. Thus we must have that L < 0. This means that -L > 0 and so $|\sin(N_1) - L| = \sin(N_1) - L > 0.5 - L > 0.5$ since $\sin(N_1) > 0.5$. But this cannot be since $|\sin(N_1) - L| < 0.25$. Therefore, L < 0 is impossible as well. Thus L must not exist. In other words, the sequence diverges.