
1 Tableau Proofs in First Order Logic

We will give a tableau proof of the following:

“(ϕ ∨ (∀x)ψ(x))→ (∀x)(ϕ ∨ ψ(x)), x not free in ϕ.”

F: (ϕ ∨ (∀x)ψ(x))→ (∀x)(ϕ ∨ ψ(x))

F: (ϕ ∨ (∀x)ψ(x))→ (∀x)(ϕ ∨ ψ(x))

T: ϕ ∨ (∀x)ψ(x)

F: (∀x)(ϕ ∨ ψ(x))

5b

T: ϕ ∨ (∀x)ψ(x)
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F: (∀x)(ϕ ∨ ψ(x))

F: ϕ ∨ ψ(c1)

7b
new constant
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F: (∀x)(ϕ ∨ ψ(x))

F: ϕ ∨ ψ(c2)

7b
new constant

c2

T: (∀x)ψ(x)

T: ψ(c2)

7a
ground term

t = c2

F: ϕ ∨ ψ(c2)

F: ϕ

F: ψ(c2)
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Explaining the Tableau:

5b For an implication to be false, the hypothesis must be true and conclusion false.

4a If A or B is true, then either A is true or B is true (we have 2 alternatives).

7b If a predicate is false for all x, then it must be false for some particular x. We give this
x a (new) name.

4b If A or B is false, then both A and B must be false.

7a If a predicate is true for all x, then it must be true for some particular x. We give this
x a (new) name.
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2 A Language with No Finite Model

Here is an example of a finite language L and a finite set of sentences S of L that has an
infinite model but no finite model.

Let L be the language with one constant c, unary function f , and unary predicate P .
Consider the (finite) set of sentences:

S = { (∀x)(¬P (x, x)),
(∀x, y)(P (x, y)→ (¬P (y, x))),
(∀x, y, z)((P (x, y) ∧ P (y, z))→ P (x, z)),
∀xP (x, f(x)),
(∀x)(∃yP (x, y)) }

A natural model for S is the structure A with domain A = N = {0, 1, 2, ...} the natural
numbers, cA = 0, fA : A→ A is the successor function defined by fA(n) = n + 1, and P is
the “<” relation: PA = {(m,n) ∈ A× A |m < n}.
Note: For the following discussion, let s and t be a ground terms with sA = m, tA = n.

To see that this is actually a model of S notice that since n ≮ n, we have (n, n) 6∈ PA
thus A ` ¬P (t, t). Since t is arbitrary, A ` (∀x)(¬P (x, x)).

We know that either m < n or n ≤ m (not both). The former gives us (m,n) ∈ PA

and (n,m) 6∈ PA. Thus A ` ¬P (t, s). On the other hand, if n ≤ m we have that (m,n) 6∈
PA. Thus A ` ¬P (s, t). Putting these together we get A ` ¬P (s, t) or A ` ¬P (t, s).
Hence, A ` P (s, t) → (¬P (t, s)). Again since s and t are arbitrary, we conclude that
A ` (∀x, y)(P (x, y)→ (¬P (y, x))).

Similarly, A ` (∀x, y, z)((P (x, y) ∧ P (y, z))→ P (x, z)) holds because “<” is a transitive
relation. Notice that n < n + 1 = fA(n). Thus (n, fA(n)) ∈ PA thus A ` P (t, f(t)).
Therefore, A ` ∀xP (x, f(x)). A ` P (t, f(t)) implies that A ` ∃yP (t, y). Therefore, A `
(∀x)(∃yP (x, y)). So we conclude, A ` S (S is satisfiable by an infinite model).

However, S has no finite model. Let a1 = cA. By (∀x)(∃yP (x, y)) we know that there
is some ground term t2 (let a2 = tA2 ) such that (a1, a2) ∈ PA. a2 is distinct from a1 since
otherwise we would have (a1, a2) = (a1, a1) ∈ PA, but we know (∀x)(¬P (x, x)).

Suppose that we have constructed a list t1, t2, ..., tl (let aj = tAj ) such that each member
of the list is distinct and (aj, al) ∈ PA for each j = 1, ..., (l − 1). Let’s extend this list.
Let tl+1 = f(tl) (and al+1 = tAl+1). We have P (tl, f(tl)) = P (tl, tl+1). But we also know
that P (tj, tl) for each j = 1, ..., (l − 1). Thus by (∀x, y, z)((P (x, y) ∧ P (y, z))→ P (x, z)) we
conclude that P (tj, tl+1) for each j = 1, ..., (l − 1). Hence, P (tj, tl+1) for each j = 1, ..., l.

Suppose that we have already listed tl+1 say tl+1 = tj (some j = 1, ..., l). Then P (tj, tl+1) =
P (tl+1, tl+1) but this cannot be since (∀x)(¬P (x, x)). Hence each element in our list is dis-
tinct.

So we can constuct an arbitrarily long list of distinct elements in any structure which
models S. Therefore, S has no finite model.
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3 Prenex Form and Skolemizations

The idea behind prenex form, is that one can “pull all the quantifiers out in front.” Once
a sentence is in prenex form, you can easily remove existential quantifiers by replacing
the corresponding variables with “new names.” Although we must be careful to state the
dependence of these “names” on other variables. For example, ∃xA(x) can be replaced by
A(f) where f is a constant. On the other hand, ∀y∃xA(x, y) can’t be replaced by ∀y A(f, y)
where f is a constant because an x exists for each y – there is a dependence of x on y. So
instead of a constant, we replace x with a function of y. That is ∀y∃xA(x, y) can be replaced
by ∀y A(f(y), y). So any sentence in prenex form can be “Skolemized” by replacing variables
bound by an existential quantifier with functions.

Example: Find prenex equivalents and Skolemizations for the following sentences:

(a) ∀y(∃xP (x, y)→ Q(y, z)) ∧ ∃y(∀xR(x, y) ∨Q(x, y)).

(b) ∃xR(x, y)↔ ∀yP (x, y).”

Part (a) I have added parentheses to make the meaning of this “sentence” clear:

(((∀y)(((∃x)P (x, y))→ Q(y, z))) ∧ ((∃y)((∀x)(R(x, y) ∨Q(x, y)))))

Now apply the following rules to transform to prenex form [the labels come from a particular
logic textbook].

(3a) ((∀u)(((((∃x)P (x, u))→ Q(u, z))) ∧ ((∃y)((∀x)(R(x, y) ∨Q(x, y))))))

(3b’) ((∀u)((∃v)(((((∃x)P (x, u))→ Q(u, z))) ∧ ((∀x)(R(x, v) ∨Q(x, v))))))

(4b) ((∀u)((∃v)((((∀w0)(P (w0, u)→ Q(u, z)))) ∧ ((∀x)(R(x, v) ∨Q(x, v))))))

(3a) ((∀u)((∃v)((∀w)((P (w, u)→ Q(u, z)) ∧ ((∀x)(R(x, v) ∨Q(x, v)))))))

(3a’) ((∀u)((∃v)((∀w)((∀x0)((P (w, u)→ Q(u, z)) ∧ (R(x0, v) ∨Q(x0, v)))))))

Finally, let us drop some of the parentheses and substitute x for x0. This should make the
formula easier to read. [Also, add a universal quantifier to bind z.]

∀z∀u∃v∀w∀x((P (w, u)→ Q(u, z)) ∧ (R(x, v) ∨Q(x, v)))

To Skolemize we remove the existential quantifier “∃v” and replace every occurance of v
with g(u, z).

∀z∀u∀w∀x((P (w, u)→ Q(u, z)) ∧ (R(x, g(u)) ∨Q(x, g(u, z))))

Part (b) Again, I have added parentheses to make the meaning of this “sentence” clear:

(((∃x)R(x, y))↔ ((∀y)P (x, y)))

Before pulling quantifiers out, we need to eliminate the connective “↔”. The above sentence
is equivalent to:

((((∃x)R(x, y))→ ((∀y)P (x, y))) ∧ (((∀y)P (x, y))→ ((∃x)R(x, y))))
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Now apply the following rules:

(4b) (((∀u0)(R(u0, y)→ ((∀y)P (x, y)))) ∧ (((∀y)P (x, y))→ ((∃x)R(x, y))))

(3a) ((∀u)((R(u, y)→ ((∀y)P (x, y))) ∧ (((∀y)P (x, y))→ ((∃x)R(x, y)))))

(4a’) ((∀u)(((∀v0)(R(u, y)→ P (x, v0))) ∧ (((∀y)P (x, y))→ ((∃x)R(x, y)))))

(3a) ((∀u)((∀v)((R(u, y)→ P (x, v)) ∧ (((∀y)P (x, y))→ ((∃x)R(x, y))))))

(4a) ((∀u)((∀v)((R(u, y)→ P (x, v)) ∧ ((∃w0)(P (x,w0)→ ((∃x)R(x, y)))))))

(3b’) ((∀u)((∀v)((∃w)((R(u, y)→ P (x, v)) ∧ (P (x,w)→ ((∃x)R(x, y)))))))

(4b’) ((∀u)((∀v)((∃w)((R(u, y)→ P (x, v)) ∧ ((∃z0)(P (x,w)→ R(z0, y)))))))

(3b’) ((∀u)((∀v)((∃w)((∃z)((R(u, y)→ P (x, v)) ∧ (P (x,w)→ R(z, y)))))))

Now let’s drop some of the parentheses to make this formula easier to read.

∀u∀v∃w∃z((R(u, y)→ P (x, v)) ∧ (P (x,w)→ R(z, y)))

To Skolemize we need to introduce to new functions, one for w and one for z. Both of these
functions will depend on u and v since the univerisal quantifiers ∀u∀v appear to the left of
these existentials. Replace w with f(u, v, x, y) and z with g(u, v, x, y) and we get [Again,
add universal quantifiers to bind the free variables x and y]:

∀x∀y∀u∀v((R(u, y)→ P (x, v)) ∧ (P (x, f(u, v))→ R(g(u, v), y)))

4 Resolution Again: Unification

To apply resolution to predicates you must deal with variables. The process of replacing
variables with other terms to make things match is called unification.

Example: Find substitutions that unify the following sets of expressions:

(a) {P (x, f(y), z), P (g(a), f(w), u), P (v, f(b), c)}
(b) {Q(h(x, y), w), Q(h(g(v), a), f(v)), Q(h(g(v), a), f(b))}.

Part (a) {P (x, f(y), z), P (g(a), f(w), u), P (v, f(b), c)}. Scanning through we must first
match x and g(a) and thus v and g(a) also. This gives {P (g(a), f(y), z), P (g(a), f(w), u), P (g(a), f(b), c)}.
The next difference is y and w. So we get {P (g(a), f(y), z), P (g(a), f(y), u), P (g(a), f(b), c)}.
This leaves the mismatch of y and b, thus we get {P (g(a), f(b), z), P (g(a), f(b), u), P (g(a), f(b), c)}.
Finally, z and u must be matched with c. Therefore, putting all this together we get the
substitution:

θ = {x/g(a), v/g(a), y/b, w/b, u/c, z/c}
Applying this substitution we get {P (g(a), f(b), c)}.

Part (b) {Q(h(x, y), w), Q(h(g(v), a), f(v)), Q(h(g(v), a), f(b))}. The first difference is x
and g(v). Matching these we get: {Q(h(g(v), y), w), Q(h(g(v), a), f(v)), Q(h(g(v), a), f(b))}.
Next we need to match y and a. This gives us: {Q(h(g(v), a), w), Q(h(g(v), a), f(v)), Q(h(g(v), a), f(b))}.
Now we need to match w and f(v). We then have: {Q(h(g(v), a), f(v)), Q(h(g(v), a), f(v)), Q(h(g(v), a), f(b))}.
Finally, we match v with b. This substitution forces us to update the substitions {x/g(v)}
and {w/f(v)} to {x/g(b)} and {w/f(b)}. This gives the following substitution:

θ = {x/g(b), y/a, w/f(b), v/b}
Applying this substitution we get {Q(h(g(b), a), f(b))}.
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5 E-Mail in First Order Logic

We wish to construct a set of first-order, fully-quantified sentences that characterize the
essential operation of an email system. We will make sure our formalization covers the
following aspects of the email system:

• An email system involves messages, people, and hosts.

• All hosts are connected to each other in a network, but not necessarily directly con-
nected to each other.

• The email system transmits each message from a source host to a destination host by
successive steps across hosts on the network.

• People and hosts send and recieve messages at instants of time.

• Instants are ordered, and receipt of a message cannot occur earlier than emission of
the message.

• All messages that are sent are received.

To begin we need to define “time” for our email system.

5.1 Time

Time involves two predicates, a unary predicate Time and a binary predicate After. Time(t)
is to be interpreted, “t is a moment in time.” After(t1, t2) is to be interpreted, “t1 comes
after t2.” The predicate After should only refer to moments in time so we include this axiom:

∀t1, t2 After(t1, t2)→ Time(t1) ∧ Time(t2)

Moments in time are linearly ordered, so we need the following axioms:

• ∀t1, t2, t3 After(t3, t2) ∧ After(t2, t1) → After(t3, t1). That is if time t3 comes after t2
which comes after t1, then it follows that t3 comes after t1 (transitivity).

• ∀t1, t2 After(t2, t1) → ¬After(t1, t2). If t2 is later than t1, then it cannot be that t1 is
later than t2 (anti-symmetry).

• ∀t1, t2 Time(t1)∧Time(t2)→ After(t1, t2)∨After(t2, t1)∨(t1 = t2). Given two moments
in time t1 and t2, either t1 comes after t2 or t2 comes after t1 or they are the same
moment in time (time is totally ordered).

5.2 The Network

A network has hosts and connections between hosts. Host(h) means that h is a host.
Connection(h1, h2) means that there is a direct connection linking h1 to h2. Connected(h1, h2)
mean that h1 and h2 are connected to each other in the network.

• ∀h1, h2 Connected(h1, h2) ∨ Connection(h1, h2)→ Host(h1) ∧ Host(h2). It only makes
sense to say that h1 is connected (or directly connected) to h2 if both h1 and h2 are
hosts.
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• ∀h1, h2 Connection(h1, h2) ↔ Connection(h2, h1). Direct connections must go both
ways.

• ∀h Host(h)→ Connection(h, h). Every host is directly connected to itself.

• ∀h1, h2 Connection(h1, h2)→ Connected(h1, h2). Any two directly connected hosts are
also connected (directly connected implies connected).

• ∀h1, h2, h3 Connected(h1, h2) ∧ Connected(h2, h3) → Connected(h1, h3). If h1 is con-
nected to h2 and h2 is connected to h3, then h1 must be connected to h3 (transitivity).

• ∀h1, h2 Host(h1) ∧ Host(h2) → Connected(h1, h2). In our network, every host is con-
nected to every other host. Note: This is not a direct connection.

5.3 People and Email Accounts

Let’s introduce a two new unary predicates, Person and Account. Person(p) means that
p is a person. Account(a) means that a is an email account. Every email account should
have an owner and should exist on some host, so we introduce two functions, owner and
hostedBy. owner(a) is the owner of account a and hostedBy(a) is the host which hosts the
email account a.

• ∀a Account(a)→ Person(owner(a))∨Host(owner(a)). This says that only people and
hosts can own email accounts.

• ∀a Account(a) → Host(hostedBy(a)). This says that email accounts are hosted by
hosts.

• ∀a Host(owner(a)) → (owner(a) = hostedBy(a)). When a host owns an account, it
should also host that account.

5.4 Messages

Message is a unary predicate. Message(m) means that m is an email message. Every message
has a sender and a recipient, so we define to functions sender and recipient. sender(m) is
the email account which sent the message m, and recipient(m) is the account to which the
message was sent. A message is sent (and received) at some moment in time. Define two
functions sent and received. sent(m) is the moment in time when the message m was sent
and received(m) is the moment when the message was received. Finally, we also need to keep
track of where the message goes between being sent and received, so we define a function of
two variables location. location(m, t) is the host where m is residing at time t.

• ∀m Message(m) → Account(sender(m)) ∧ Account(recipient(m)). Messages are sent
from email accounts to email accounts.

• ∀m Message(m) → Time(sent(m)) ∧ Time(received(m)). Messages are sent and re-
ceived at moments in time.

• ∀m Message(m) → (hostedBy(sender(m)) = location(m, sent(m))). Every message
starts at the host of the sender’s email account.
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• ∀m Message(m)→ (hostedBy(recipient(m)) = location(m, received(m))). Every mes-
sage is delivered to the host of the recipient’s email account at the time it is received.

• ∀m, t Host(location(m, t)) ↔ (After(t, sent(m)) ∨ (t = sent(m))) ∧Message(m). If m
is located on a host at time t, then m must be a message and t must be a time after
the message was sent (or the time it was sent). Conversely, a message must reside on
some host at every moment in time after it has been sent. As far as we are concerned,
the message doesn’t exist before it is sent. But once the message is sent, it exists from
that time on.

• ∀m, t Message(m)∧After(t, received(m))→ (location(m, t) = hostedBy(recipient(m))).
A message remains on its recipient’s host once it has been received.

• ∀m, t1 Host(location(m, t1)) ∧ ¬(location(m, t1) = hostedBy(recipient(m)))→
∃t2 After(t2, t1) ∧ ¬(location(m, t1) = location(m, t2)) ∧
Connection(location(m, t1), location(m, t2)) ∧
(∀t3 After(t3, t1) ∧ After(t2, t3)→ location(m, t3) = location(m, t1)).
If at time t1 a message still has not been delivered to its recipient’s host, then there
exists a future time t2 when the message will be transferred to a different host which
is directly connected to the present host. Moreover, for all times t3 after t1 and before
t2 the message will remain on the present host.

5.5 What’s Missing?

There are many elements missing in this formalization. Like how is the next connection
chosen? We just guarantee that one exists. Also, I have assumed that messages exist
forever. What about deletion?

This is definitely an ideal email system in many ways since messages always get to
their destination, hosts never go down, and all hosts are always connected. However, this
formalization does capture the basics of an email system.
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