PREDICATE LOGIC: PROOFS IN K

Axioms:

Axiom 1: $A \rightarrow (B \rightarrow A)$

Axiom 2: $(A \to (B \to C)) \to ((A \to B) \to (A \to C))$

Axiom 3: $(\neg B \rightarrow \neg A) \rightarrow ((\neg B \rightarrow A) \rightarrow B)$

Axiom 4: $(\forall x A(x)) \rightarrow A(t)$, provided that t is free for x in A(x).

Axiom 5: $\forall x(A \rightarrow B) \rightarrow (A \rightarrow \forall xB)$, provided that x does not occur free in A.

Rules of Inference:

Modus Ponens (MP): From A and $A \rightarrow B$ deduce B.

Generalization (GEN): From A, deduce $\forall xA$.

Shortcuts:

Lemmas: You may write an instance of a previously proved (lowed numbered) theorem as a line, if the instances of the "givens" of that theorem appear as earlier lines.

Rule T: Any instance of a tautology may be inserted as a line in a predicate calculus proof.

Deduction Theorem: If there is a proof of $A \vdash B$ with no applications of generalization to any variables that occur free in A, then there is a proof of $\vdash A \rightarrow B$.

Add $\exists x \text{ Rule: If } A(t)$ is the result of replacing every free occurrence of x in A(x) with t, and t is free for x in A(x), then from A(t) we may deduce $\exists x A(x)$.

Rule C: If $\exists x A(x)$ is a previous line in a proof, we may write $A(\underline{c})$ as a line, provided that the following two conditions hold.

- 1. \underline{c} is a new constant symbol.
- 2. If some variable (say y) appears free in the formula $\exists x A(x)$, then GEN is never applied to y in the proof.

Abbreviations:

Existential Quantifier: $\exists xA$ abbreviates $\neg \forall x \neg A$

Conjunction: $A \wedge B$ abbreviates $\neg(A \rightarrow \neg B)$

Disjunction: $A \lor B$ abbreviates $(\neg A) \to B$

Double Implication: $A \leftrightarrow B$ abbreviates $\neg((A \to B) \to \neg(B \to A))$ Note: When $A \leftrightarrow B$ and $(A \to B) \land (B \to A)$ are unabbreviated, they are identical.

Theorems:

K1:
$$\vdash \forall x(A(x) \rightarrow (B(x) \rightarrow A(x)))$$
.K19: $\neg \forall xA(x) \vdash \exists x \neg A(x)$ K2: $\forall x \forall yA(x, y) \vdash \forall y \forall xA(x, y)$.K20: $\exists x(A(x) \land B(x)) \vdash \exists x$ K3: $A(x) \land B(x) \vdash A(x)$.K21: $\vdash \exists xA(x) \rightarrow \exists x(A(x))$ K4: $\vdash \forall x \forall yA(x, y) \rightarrow \forall y \forall xA(x, y)$ K22: $\vdash \exists x \forall yA(x, y) \rightarrow \forall y \exists xA(x)$ K5: $\vdash \forall x(A(x) \land B(x)) \rightarrow \forall xA(x)$ K23: $\vdash \exists x(A(x) \rightarrow B(x)) \rightarrow \exists x(A(x))$ K6: $\vdash [\forall xA(x)] \rightarrow \forall x(A(x) \lor B(x))$ K24: $\vdash \exists xB(x) \rightarrow \exists x(A(x))$ K7: $\vdash \forall x(A(x) \rightarrow B(x)) \rightarrow (\forall xA(x) \rightarrow \forall xB(x))$ K26: $\vdash (\forall xA(x) \rightarrow \exists xB(x))$ K9: $\vdash \forall x \forall yA(x, y) \rightarrow \forall y \forall xA(y, x)$ K27: $\vdash \forall xA(x, x) \rightarrow \forall x\exists xA(x)$ K10: $\vdash \forall x(A(x) \lor B(x)) \rightarrow (\forall x \neg A(x) \rightarrow \forall xB(x))$ K28: $\vdash \forall y\exists x(\neg A(y, x) \lor A(x)) \rightarrow \forall xA(x)) \rightarrow \forall xA(x) \rightarrow \forall xB(x))$ K12: $A(y, y) \vdash \forall y\exists xA(x, y)$ K30: $\vdash (\exists xA(x) \lor \exists xB(x))$ K13: $\vdash \forall xA(x) \rightarrow \exists xA(x)$ K31: $\vdash \exists x(A(x) \land A(x)) \rightarrow \exists xB(x))$ K14: $\vdash \forall yA(y) \rightarrow \exists xA(x)$ K32: $\vdash (\forall xA(x) \land \forall xB(x))$ K15: $\vdash \forall x(A(x) \lor B(x)) \rightarrow [\forall xA(x) \lor \exists xB(x)]$ K33: $\vdash \forall x(A(x) \land \forall xB(x))$ K16: $\neg \exists xA(x) \vdash \forall x \neg A(x)$ K35: $\vdash (\forall xA(x) \land \forall xB(x))$ K18: $\exists x \neg A(x) \vdash \neg \forall xA(x)$ K35: $\vdash (\forall xA(x) \land \forall xB(x))$ K18: $\exists x \neg A(x) \vdash \neg \forall xA(x)$ K36: $\vdash (\exists xA(x) \land \forall xB(x))$

K19:
$$\neg \forall xA(x) \vdash \exists x \neg A(x)$$

K20: $\exists x(A(x) \land B(x)) \vdash \exists xA(x)$
K21: $\vdash \exists xA(x) \rightarrow \exists x(A(x) \lor B(x))$
K22: $\vdash \exists x \forall yA(x,y) \rightarrow \forall y \exists xA(x,y)$
K23: $\vdash \exists x(A(x) \rightarrow B(x)) \rightarrow (\forall xA(x) \rightarrow \exists xB(x)))$
K24: $\vdash \exists xB(x) \rightarrow \exists x(A(x) \rightarrow B(x))$
K25: $\vdash \neg \forall xA(x) \rightarrow \exists xB(x)) \rightarrow \exists x(A(x) \rightarrow B(x))$
K26: $\vdash (\forall xA(x) \rightarrow \exists xB(x)) \rightarrow \exists x(A(x) \rightarrow B(x)))$
K27: $\vdash \forall xA(x,x) \rightarrow \forall x \exists yA(x,y)$
K28: $\vdash \forall y \exists x(\neg A(y,x) \lor A(y,y))$
K29: $\vdash \exists x(A(x) \lor B(x)) \rightarrow (\exists xA(x) \lor \exists xB(x)))$
K30: $\vdash (\exists xA(x) \lor \exists xB(x)) \rightarrow \exists x(A(x) \lor B(x)))$.
K31: $\vdash \exists x(A(x) \land B(x)) \rightarrow (\exists xA(x) \land \exists xB(x)))$
K32: $\vdash (\forall xA(x) \land \exists xB(x)) \rightarrow \exists x(A(x) \land B(x)))$
K33: $\vdash (\forall xA(x) \lor \forall xB(x)) \rightarrow \forall x(A(x) \land B(x)))$
K34: $\vdash \forall x(A(x) \land \forall xB(x)) \rightarrow \forall x(A(x) \land \forall xB(x)))$
K35: $\vdash (\forall xA(x) \land \forall xB(x)) \rightarrow \forall x(A(x) \land \forall xB(x)))$
K36: $\vdash (\exists xA(x) \rightarrow \forall xB(x)) \rightarrow \forall x(A(x) \land B(x)))$