Homework #2

Due: Wed., Sept. 11th, 2013

- 1. Workin' mod 15.
 - (a) Find the additive inverse of each element in \mathbb{Z}_{15} .
 - (b) Find the multiplicative inverse (it is exists) of each element in \mathbb{Z}_{15} . [If a multiplicative inverse fails to exist, write "DNE" (does not exist).]
 - (c) Compute $2^{-3} \cdot (5-11) \cdot 14^{999} + 13 \pmod{15}$.
- 2. The Euclidean Algorithm
 - (a) Use the Euclidean Algorithm to find the greatest common divisor (gcd) of 1202 and 42.
 - (b) Use the (extended) Euclidean Algorithm to find the greatest common divisor of a = 303 and b = 63, say $d = \gcd(a, b)$. Then determine integers x and y such that ax + by = d.
 - (c) Use the (extended) Euclidean Algorithm to find 67^{-1} in U(12345).
- 3. [Gallian Chapter 0 # 8] Let $d = \gcd(a, b)$. If a = da' and b = db', show that $\gcd(a', b') = 1$.
- 4. [Gallian Chapter 0 # 10] Let $d = \gcd(a, b)$ and $\ell = \operatorname{lcm}(a, b)$ (lcm = least common multiple). Show that if c divides a and c divides b, then c divides d. Also, show that if c is a multiple of a and c is a multiple of b, then c is a multiple of ℓ .