- 1. A function problem
 - (a) Let $f: \mathbb{Z} \to \mathbb{Z}$ be defined by $f(x) = 3x^2 + 1$.
 - i. Show f is not 1-1.
 - ii. Show f is not onto.
 - iii. Let $A = \{-1, 0, 1, 3, 13\}$. Find f(A).
 - iv. Let $A = \{-1, 0, 1, 3, 13\}$. Find $f^{-1}(A)$.
 - (b) Let $g: X \to Y$. Prove that g is onto if and only if $g^{-1}(B) \neq \phi$ (the inverse image of B is non-empty) for all non-empty subsets of Y: $\phi \neq B \subset Y$.

Recall that for $A \subseteq X$ and $B \subseteq Y \dots$

$$f(A) = \{f(x) \mid x \in A\} \subseteq Y$$
 and $f^{-1}(B) = \{x \in X \mid f(x) \in B\} \subseteq X$

2. Dihedral groups: generators and relations style. Recall that . . .

$$D_5 = \langle x, y \mid x^5 = 1, y^2 = 1, \text{ and } (xy)^2 = 1 \rangle = \{1, x, x^2, x^3, x^4, y, xy, x^2y, x^3y, x^4y\}$$

- (a) Write down the Cayley table for D_5 .
- (b) Find the inverse of each element (i.e. $1^{-1} = ????$, $x^{-1} = ????$, etc.).
- (c) Find the order of each element.
- (d) Find all of the **distinct** cyclic subgroups of D_5 .
- (e) What is in $Z(D_5)$?
- 3. The Matrix problem
 - (a) Compute $A^{-1}B^2$ where $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \quad B = \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix} \in \mathrm{GL}_2(\mathbb{Z}_9)$
 - (b) Find the cyclic subgroup generated by A. What is the order of A?
- 4. [Gallian Chapter 3 #42] Let H be a subgroup of G (a group). The set $C(H) = \{x \in G \ xh = hx \ \text{for all} \ h \in H\}$ is called the *centralizer* of H. Prove that C(H) is a subgroup of G.