Homework #5

Due: Wed., Oct. 7th, 2015

- 1. Cayley's theorem tells us that $Q = \{\pm 1, \pm i, \pm j, \pm k\}$ is isomorphic to a subgroup of S_8 . Find such a subgroup using the ordering of elements: 1, -1, i, -i, j, -j, k, -k (so, for example, i is element #3). To help you get started, left multiplication by -1 sends 1 to -1, -1 to 1, i to -i, etc. so it sends 1 to 2, 2 to 1, 3 to 4, etc. Thus -1 corresponds with (12)(34)(56)(78).
- 2. The following pairs of groups are isomorphic. Prove it.
 - (a) U(7) and \mathbb{Z}_6

(b)
$$H = \left\{ \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix} \mid n \in \mathbb{Q} \right\}$$
 and \mathbb{Q}

- 3. The following pairs of groups are \underline{not} isomorphic. Prove it.
 - (a) $(\mathbb{Z}_5)^{2\times 2}$ and $GL_2(\mathbb{R})$
 - (b) \mathbb{Z}_{222} and D_{111}
 - (c) A_4 and D_6
 - (d) $\mathbb{R}_{\neq 0}$ and $\mathbb{C}_{\neq 0}$ (non-zero reals and complex numbers both under multiplication)
- 4. Let $\varphi: G_1 \to G_2$ be an isomorphism
 - (a) Show $\varphi(\langle g \rangle) = \langle \varphi(g) \rangle$ for any $g \in G_1$. [This implies that G_1 is cyclic iff G_2 is cyclic.]
 - (b) Let K be a subgroup of G_2 . Show that $\varphi^{-1}(K) = \{g \in G_1 \mid \varphi(g) \in K\}$ is a subgroup of G_1 .