
Homework #1

Due: Wed., Aug. 26th, 2020

- 1. Determine which of the following sets with operations are groups. If it is a group, state its identity, what the inverse of a typical element looks like, and determine if it is Abelian. If it is not a group, state which axioms hold and give counter-examples for those which fail (don't forget closure).
 - (a) $(\mathbb{Z}_{>0},+)$ non-negative integers with addition
 - (b) $(3\mathbb{Z}, +)$ multiples of 3 (i.e. $0, \pm 3, \pm 6, \ldots$) with addition
 - (c) $(\mathbb{R}_{<0}, \cdot)$ negative reals with multiplication
 - (d) $(\mathbb{R}_{\neq 0}, \div)$ non-zero reals with division
 - (e) $(\mathbb{Q}_{>0}, \cdot)$ positive rationals with multiplication
- 2. Let G be a group with identity $e \in G$. Suppose that $g^2 = e$ for all $g \in G$.
 - (a) What can be said about inverses of elements in G? Orders of elements?
 - (b) Prove that G must be abelian.
- 3. Consider the dihedral group $D_5 = \{R_{0^{\circ}}, R_{72^{\circ}}, R_{144^{\circ}}, R_{216^{\circ}}, R_{288^{\circ}}, V_1, V_2, V_3, V_4, V_5\}$ (symmetries of a regular pentagon). [Rotations are done counter-clockwise and reflections are labeled in the picture below.]

- (a) Compute $V_1R_{72^{\circ}}$, $R_{144^{\circ}}V_3$, and V_2V_5 .
- (b) Is D_5 Abelian? Why or why not?
- (c) Find the inverse of each element $(R_{00}^{-1} = ????, R_{720}^{-1} = ????, \text{ etc.})$.
- (d) Find the order of each element.