Homework #2

Due: Wed., Sept. 2^{nd} , 2020

- 1. Workin' mod 14.
 - (a) Find the additive inverse and order of each element in \mathbb{Z}_{14} .
 - (b) Find the multiplicative inverse or indicate "DNE" (does not exist) for each element in \mathbb{Z}_{14} . If the multiplicative inverse exists, that element belongs to U(14). In this case, find the order of that element (in U(14)).
 - (c) Compute $5^{-2} \cdot (4-10) \cdot 13^{999} + 11 \pmod{14}$
 - (d) Compute A^{-1} given $A = \begin{bmatrix} 1 & 5 \\ 4 & 9 \end{bmatrix} \in GL_2(\mathbb{Z}_{14}).$
- 2. The Euclidean Algorithm
 - (a) Use the Euclidean Algorithm to find the greatest common divisor (gcd) of 1234 and 542.
 - (b) Use the (extended) Euclidean Algorithm to find the greatest common divisor of a = 1001 and b = 53, say $d = \gcd(a, b)$. Then determine integers x and y such that ax + by = d.
 - (c) Use the (extended) Euclidean Algorithm to find 9^{-1} in U(1000).
- 3. Let $d = \gcd(a, b)$. If a = da' and b = db', show that $\gcd(a', b') = 1$. [Of course, $a, a', b, b', d \in \mathbb{Z}$.]
- 4. Show that for every $n \in \mathbb{Z}$ we have $n^3 \equiv n \pmod{6}$.