Homework #6

- 1. Let H and K be subgroups of G.
 - (a) Suppose that H and K are normal subgroups of G. Show that $H \cap K$ is a normal subgroup of G as well. Note: Please include a careful proof that $H \cap K$ is a subgroup – even though we've shown this before.

Due: Wed., Oct. 21st, 2020

- (b) Let |G| = 36, |H| = 12, and |K| = 18. Using Lagrange's Theorem, what are the possible orders of $H \cap K$?
- 2. Let $H = \{1, x^3, x^6\} \subseteq D_9 = \{1, x, \dots, x^8, y, xy, \dots, x^8y\} = \langle x, y \mid x^9 = 1, y^2 = 1, xyxy = 1 \rangle$. Notice $H = \langle x^3 \rangle$, so H is a subgroup of D_9 . Quickly compute $[D_9 : H]$ (i.e. the index of H in D_9). Then find all of the left and right cosets of H in D_9 . Is H a normal subgroup of D_9 ?
- 3. Direct products of cyclic groups.¹
 - (a) Find the order of (5,2,6) in $\mathbb{Z}_6 \times \mathbb{Z}_8 \times \mathbb{Z}_{99}$.
 - (b) Explain why $\mathbb{Z}_{20} \cong \mathbb{Z}_4 \times \mathbb{Z}_5$ but $\mathbb{Z}_{20} \ncong \mathbb{Z}_2 \times \mathbb{Z}_{10}$. In addition, list the distinct orders of elements in both $\mathbb{Z}_4 \times \mathbb{Z}_5$ and $\mathbb{Z}_2 \times \mathbb{Z}_{10}$ and give an example of an element of each such order.
- 4. Let G and H be groups.
 - (a) Show $\{e\} \times H = \{(e,h) \mid h \in H\}$ is a normal subgroup of $G \times H$ (where e is the identity of G). Note: You need to show that $\{e\} \times H$ is a subgroup AND that it's normal.
 - (b) Show $G \times H \cong H \times G$.

¹Gallian uses $G \oplus H$ for direct products. I will use the more standard $G \times H$ notation.