
Math 3110 Isomorphism Theorems Modern Algebra

To try to understand objects one can study quotients. The isomorphism theorems are “basic” tools for dealing
with quotients. I once attended a conference where the speaker referred to the First Isomorphism Theorem (also
called the Fundamental Theorem of Homomorphisms) as a theorem we “learn in our childhood.” While this and
following theorems might look intimidating at first, once we are used to them, they are easy to apply and very useful.

While we will discuss these theorems in the context of group theory, it is worth mentioning that they hold in
every branch of algebra. If we wanted to state and prove these results in the context of rings or vector spaces or Lie
algebras or whatever, the statements would look nearly identical and the proofs would be structured the same way
(but with different notations).

Before stating and proving the First Isomorphism Theorem for groups, let us look at the set theory version.

Theorem: Let f : A→ B be a function.

Then f can be factored as f = ι ◦ f ◦ π where π is onto, f is invertible, and ι is one-to-one.

Proof: First, we will illustrate with an example. Suppose A = {1, 2, 3, 4, 5} and B = {a, b, c, d} and let f(1) = f(2) =
a, f(3) = f(4) = b, and f(5) = c. We let A be the fibers of f . In other words, each element of A is a set of all values
that map to a particular output. In particular, A = {{1, 2}, {3, 4}, {5}} (these are the sets of elements that map
to a, b, and c respectively). Then we define π : A → A to be the projection onto the fibers: π(1) = π(2) = {1, 2},
π(3) = π(4) = {3, 4}, and π(5) = {5}. Notice that π maps A onto A. Next, define f : A → range(f) by
f({1, 2}) = a, f({3, 4}) = b, and f({5}) = c. Notice that f is an invertible map between A = {{1, 2}, {3, 4}, {5}}
and range = f(A) = {a, b, c}. Finally, let ι : range(f) → B be the inclusion map defined ι(a) = a, ι(b) = b, and
ι(c) = c is one-to-one. Notice that f = ι ◦ f ◦ π (for example, ι(f(π(1))) = ι(f({1, 2})) = ι(a) = a = f(1)).

Now the general proof. Let f : A→ B be a function. Consider the relation on A defined by x ∼ y if and only if
f(x) = f(y). This is an equivalence relation: f(x) = f(x) so x ∼ x; x ∼ y implies f(x) = f(y) so f(y) = f(x) so
y ∼ x; x ∼ y and y ∼ z implies f(x) = f(y) and f(y) = f(z) so f(x) = f(z) so x ∼ z. Thus the equivalence classes
of this relation partition A. Let [x] denote the equivalence class of x. This is {y ∈ A | x ∼ y} = {y ∈ A | f(x) =
f(y)} = {y ∈ A | f(y) ∈ {f(x)}} = f−1({f(x)}) (i.e., the inverse image of the singleton set f(x) – in other words,
the fiber over f(x)). Let A = {[x] | x ∈ A} (i.e., the set of equivalence classes – that is – the fibers of f).

Define π : A → A by π(x) = [x] (map each element to its equivalence class). Clearly, π is onto. Next, let
f : A → f(A) be defined by f([x]) = f(x) (i.e., map each fiber to the element it is the fiber over). Notice that
[x] = [y] iff x ∼ y iff f(x) = f(y) iff f([x]) = f([y]). Reading in one direction, this says equal inputs yield equal
outputs (i.e., f is well-defined). Reading in the other direction, this says equal outputs imply equal inputs (i.e., f
is one-to-one). Notice that y ∈ f(A) implies there is some x ∈ A such that f(x) = y. Thus f([x]) = f(x) = y
and so f is also onto. We now have f is an invertible function. Now let ι : f(A) → B be defined by ι(x) = x
(this kind of map is called an inclusion map). Obviously ι is one-to-one. Finally, notice that for any x ∈ A,
(ι ◦ f ◦ π)(x) = ι(f(π(x))) = ι(f([x])) = ι(f(x)) = f(x) so that ι ◦ f ◦ π = f . �

The First Isomorphism Theorem is essentially just the above theorem applied to group homomorphisms. Let
us see what the fibers of a group homomorphism are. Let ϕ : G → H be a homomorphism of groups. Recall
that the kernel of ϕ is the set of elements that map to the identity of the codomain (i.e., H). In other words,
Ker(ϕ) = ϕ−1({1}). So the kernel is the fiber over ϕ(1) = 1. Let us identify the other fibers of ϕ:

ϕ−1({ϕ(a)}) = {x ∈ G | ϕ(x) = ϕ(a)} = {x ∈ G | 1 = ϕ(x)−1ϕ(a) = ϕ(x−1a)} = {x ∈ G | x−1a ∈ Ker(ϕ)}
= {x ∈ G | xKer(ϕ) = aKer(ϕ)} = {x ∈ G | x ∈ aKer(ϕ)} = aKer(ϕ)

In other words, a and b both map to the same output if and only if they “differ” by a kernel element:
ϕ(a) = ϕ(b) if and only if there exists k ∈ Ker(ϕ) such that b = ak.

The set of fibers is our set of (left) cosets
G
��

Ker(ϕ)
. We now define our map between fibers and the range:

ϕ :
G
��

Ker(ϕ)
→ ϕ(G) defined by ϕ(aKer(ϕ)) = ϕ(a)

Notice that aKer(ϕ) = bKer(ϕ) if and only if ϕ(a) = ϕ(b). Thus ϕ is a well-defined, one-to-one function. In
addition, we have rigged it up to be onto. Also, since Ker(ϕ) is a normal subgroup of G, G/Ker(ϕ) is itself a
(quotient) group. Notice that ϕ(aKer(ϕ)bKer(ϕ)) = ϕ(abKer(ϕ)) = ϕ(ab) = ϕ(a)ϕ(b) = ϕ(aKer(ϕ))ϕ(bKer(ϕ))
so that ϕ is operation preserving (i.e., a homomorphism). Thus ϕ is an isomorphism. Once can easily check that
π : G → G/Ker(ϕ) defined by π(g) = gKer(ϕ) is an onto homomorphism (i.e., an epimorphism) and ι : ϕ(G) → H
defined by ι(h) = h is a one-to-one homomorphism (i.e., a monomorphism). Thus ϕ = ι ◦ ϕ ◦ π can be factored into
a epi- followed by iso- followed by mono-morphism. In particular, we have shown:
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Theorem: [First Isomorphism Theorem] Let ϕ : G→ H be a homomorphism. Then
G
��

Ker(ϕ)
∼= ϕ(G)

(i.e., the domain mod the kernel is isomorphic to the image).

One of many important consequences of the First Isomorphism Theorem is that we can identify the concepts of
quotient and homomorphic image as well as normal subgroup and kernel. First, we note that given a homomorphism,
ϕ : G→ H, its range (=image), ϕ(G) is a subgroup of the codomain, H. We call ϕ(G) a homomorphic image of G.

To tie a few things together, recall that we defined a projection map π while factoring our homomorphism ϕ.
We generalize. Suppose G is a group with normal subgroup N . Define π : G → G/N where π(g) = gN to be a
projection of G onto the quotient group G/N . This homomorphism (π(ab) = abN = aNbN = π(a)π(b)) is obviously
onto and Ker(π) = {g ∈ G | π(g) = N} = {g ∈ G | gN = N} = {g ∈ G | g ∈ N} = N . Therefore, since the image
of π is G/N , we have that G/N is a homomorphic image. Conversely the First Isomorphism Theorem says that
homomorphic images are isomorphic to the quotient of the domain by the kernel. We summarize:

Corollary: Every homomorphic image is (up to isomorphism) a quotient. Conversely, every quotient is a ho-

momorphic image. Also, the kernel of a homomorphism is a normal subgroup (of the homomorphism’s domain).
Conversely, every normal subgroup is the kernel of some homomorphism.

As the name indicates, the First Isomorphism Theorem is the first in a family of theorems. The next theorem,
the Second Isomorphism Theorem, is also called the. . .

Theorem: [Diamond Isomorphism Theorem] Let G have subgroups A and B where B is a
normal subgroup of G. Then (1) AB = {ab | a ∈ A and b ∈ B} is a subgroup of G with B as a
normal subgroup, (2) A ∩B is a normal subgroup of A, and (3) AB/B ∼= A/(A ∩B).

Note: In the diagram to the right, the quotients of groups by their subgroups connected by a
double line are isomorphic to each other. Thus giving rise to this theorem’s name.

AB

A B

A ∩B

Proof: For (1), let ab, cd ∈ AB where a, c ∈ A and b, d ∈ B. Then, noting c−1bc ∈ B because B is normal, we have
ab · cd = ac · c−1bcd ∈ AB considering a, c ∈ A and c−1bc, d ∈ B and the fact the A and B are subgroups and thus
closed under the operation. Also, (ab)−1 = b−1a−1 = a−1 · ab−1a−1 ∈ AB again because a−1 ∈ A (subgroups are
closed under inversion) and ab−1a−1 ∈ B (normal subgroups are closed under inversion and conjugation). Obviously,
B = 1 ·B is a subset of AB and since B is normal in G, it is also normal in the subgroup AB.

For (2), we know that A∩B is a subgroup of A, we just need to check normality. Let x ∈ A∩B and g ∈ A. Then
x ∈ A and x ∈ B. We have gxg−1 ∈ A (by closure under the operation and inverses since x, g ∈ A) and gxg−1 ∈ B
since B is a normal subgroup of G. Therefore, gxg−1 ∈ A ∩B and thus it is a normal subgroup of A.

Now we prove (3) by utilizing the First Isomorphism Theorem. Consider ϕ : A→ AB/B defined by ϕ(x) = xB.
Notice if x ∈ A, then x = x · 1 ∈ AB thus xB ∈ AB/B [Our codomain is sensible]. Also, ϕ(xg) = xgB = xBgB =
ϕ(x)ϕ(g) so ϕ is a homomorphism. Also, consider abB ∈ AB/B where a ∈ A and b ∈ B. Then ϕ(a) = aB = abB
(since b is absorbed by B). Thus ϕ is onto. Finally, Ker(ϕ) = {a ∈ A | ϕ(a) = B} = {a ∈ A | aB = B} = {a ∈
A | a ∈ B} = A ∩B. Now apply the First Isomorphism Theorem: A/(A ∩B) = A/Ker(ϕ) ∼= ϕ(A) = AB/B. �

The next isomorphism theorem reveals that quotients of quotients are just quotients!

Theorem: [Third Isomorphism Theorem] Let A / G. Suppose B / G/A. Then B = {x ∈ G | xA ∈ B} / G.
Moreover, A ⊆ B, B/A = B (i.e., normal subgroups of G/A come from quotienting normal subgroups of G), and
(G/A)/(B/A) ∼= G/B (like canceling fractions – but not).

Proof: Recall that A is the identity of G/A so that A ∈ B (subgroups contain the identity). Thus a ∈ A implies aA =
A ∈ B so that a ∈ B and so A ⊆ B. Let x, y ∈ B and g ∈ G. Therefore, xA, yA ∈ B and so xyA = xAyA, x−1A =
(xA)−1, (gxg−1)A = gAxA(gA)−1 ∈ B since B is a normal subgroup of G/A. Therefore, xy, x−1, gxg−1 ∈ B and
thus B is a normal subgroup of G. Note that B/A = {xA | x ∈ B} = {xA | xA ∈ B} = B.

To establish our last fact, once again we appeal to the First Isomorphism Theorem. Let ϕ : G/A → G/B be
defined by ϕ(gA) = gB. Since we just “defined” a map in terms of a representative of a coset, we need to make sure
it is well-defined. To that end, suppose gA = xA. Then g−1x ∈ A but A ⊆ B so g−1x ∈ B and thus gB = xB so
ϕ is a well-defined function. Next, ϕ(xAgA) = ϕ(xgA) = xgB = xBgB = ϕ(xA)ϕ(gA) so ϕ is a homomorphism.
Given gB ∈ G/B, we have gA ∈ G/A where ϕ(gA) = gB so ϕ is onto. Also, keeping in mind that B is the identity
of G/B, Ker(ϕ) = {xA ∈ G/A | ϕ(xA) = B} = {xA ∈ G/A | xB = B} = {xA ∈ G/A |;x ∈ B} = B/A. Therefore,
by the First Isomorphism Theorem, (G/A)/(B/A) = (G/A)/Ker(ϕ) ∼= ϕ(G/A) = G/B. �
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Our last isomorphism theorem, allows us to translate between information about the subgroups of a group and
its quotients. Keeping in mind that quotients and homomorphic images are really essentially the same thing (up to
isomorphism), we can either state this theorem in terms of quotients or homomorphisms. We will state it in terms
of the latter. This Fourth Isomorphism Theorem is also known as the. . .

Theorem: [Lattice Isomorphism Theorem] Let ϕ : G→ H be a homomorphism with kernel K = Ker(ϕ). There
is a bijection (i.e., one-to-one and onto map) between the subgroups of G which contain the kernel K and the
subgroups of the range ϕ(G): K ⊆ A ⊆ G maps to {1} ⊆ ϕ(A) ⊆ ϕ(G). Moreover, for any subgroups A and B of G
which contain K, we have (1) A ⊆ B if and only if ϕ(A) ⊆ ϕ(B), (2) if A ⊆ B, then [B : A] = [ϕ(B) : ϕ(A)], (3)
ϕ (〈A,B〉) = 〈ϕ(A), ϕ(B)〉, (4) ϕ(A ∩B) = ϕ(A) ∩ ϕ(B), and (5) A / G if and only if ϕ(A) / ϕ(G).

Note: Recall that 〈A,B〉 is the smallest subgroup containing both A and B (i.e., the subgroup generated by A∪B).

Proof: Let L = {A ⊆ G | A is a subgroup of G and K ⊆ A} and M = {C ⊆ H | C is a subgroup of ϕ(G)} and
recall define Φ : L → M by Φ(A) = ϕ(A) = {ϕ(x) | x ∈ A} (i.e., mapping sets to their images under ϕ). We know
that the image of a subgroup is a subgroup of the range, so if A ∈ L, then Φ(A) ∈ M [This map makes sense].
We claim that Φ−1 : M → L is given by Φ−1(C) = ϕ−1(C) = {g ∈ G | ϕ(g) ∈ C} (i.e., the inverse image of C
under ϕ). Suppose C ∈ M, we know that inverse images of subgroups are subgroups, so ϕ−1(C) is a subgroup.
Moreover, if k ∈ K = Ker(ϕ), then ϕ(k) = 1 ∈ C so k ∈ ϕ−1(C) (i.e., K ⊆ ϕ−1(C)). Therefore, ϕ−1(C) ∈ L.
Notice that ϕ(ϕ−1(C)) = ϕ({g ∈ G | ϕ(g) ∈ C}) = {ϕ(g) | ϕ(g) ∈ C} = C since every element of C is the image
of something in G (i.e., C ⊆ ϕ(G)). Next, suppose A ∈ L. Then ϕ−1(ϕ(A)) = {g ∈ G | ϕ(g) ∈ ϕ(A)}. This is
the union of all of the fibers over elements of ϕ(A). Recall that the fiber over ϕ(a) is aKer(ϕ) = aK. Therefore,
ϕ−1(ϕ(A)) = ∪a∈AaK = AK = A since K ⊆ A. We have just shown that Φ(A) = ϕ(A) and Φ−1(C) = ϕ−1(C) are
inverse maps of each other. Therefore, Φ is a bijection between L and M.

For (1), clearly A ⊆ B implies ϕ(A) ⊆ ϕ(B), and ϕ(A) ⊆ ϕ(B) implies A = ϕ−1(ϕ(A)) ⊆ ϕ−1(ϕ(B)) = B.
For (2), consider f : B/A → ϕ(B)/ϕ(A) defined by f(xA) = ϕ(x)ϕ(A). Notice that xA = yA (where x, y ∈ B)

implies x−1y ∈ A so that ϕ(x)−1ϕ(y) = ϕ(x−1y) ∈ ϕ(A) and thus ϕ(x)ϕ(A) = ϕ(y)ϕ(A). Conversely, suppose
ϕ(x)ϕ(A) = ϕ(y)ϕ(A) (where x, y ∈ B). This implies ϕ(x−1y) = ϕ(x)−1ϕ(y) ∈ ϕ(A) and thus ϕ(x−1y) = ϕ(a) for
some a ∈ A. Therefore, x−1y = ak for some k ∈ Ker(ϕ) = K. But K ⊆ A so x−1y ∈ A and thus xA = yA. In other
words, f is a well-defined, one-to-one function (and obviously onto). Thus the cardinalities of B/A and ϕ(B)/ϕ(A)
must be equal.

For (3), recall that elements of the subgroup generated by S can be expressed as words over the alphabet
S ∪ S−1. Noting that subgroups are closed under inverses, elements of 〈A,B〉 are just words over A ∪ B and
elements of 〈ϕ(A), ϕ(B)〉 are just words over ϕ(A) ∪ ϕ(B). Let w = w1w2 · w` where wk’s belong to A ∪ B. Then
ϕ(w) = ϕ(w1)ϕ(w2) · · ·ϕ(w`) so that the image of a word over A ∪B is just a word over ϕ(A) ∪ ϕ(B) since ϕ(wk)’s
belong to ϕ(A) ∪ ϕ(B). The result now follows.

For (4), if g ∈ ϕ(A∩B) then there is some x ∈ A∩B such that g = ϕ(x). Then since x ∈ A and x ∈ B, we have
g = ϕ(x) ∈ ϕ(A) ∩ ϕ(B). Conversely, suppose g ∈ ϕ(A) ∩ ϕ(B). Then because g ∈ ϕ(A) (resp. g ∈ ϕ(B)) there is
some a ∈ A such that g = ϕ(a) (resp. b ∈ B such that g = ϕ(b)). Now ϕ(a) = g = ϕ(b) implies a = bk for some
k ∈ Ker(ϕ) = K. But K ⊆ B. Therefore, a = bk ∈ B thus a ∈ A ∩B and so g = ϕ(a) ∈ ϕ(A ∩B).

Finally, for (5), suppose A / G. Let ϕ(g) ∈ ϕ(G) and ϕ(a) ∈ ϕ(A) (where g ∈ G and a ∈ A). Then
ϕ(g)ϕ(a)ϕ(g)−1 = ϕ(gag−1) ∈ ϕ(A) because gag−1 inA (normal subgroups are closed under conjugation). Thus
ϕ(A) / ϕ(G). Conversely, suppose ϕ(A) / ϕ(G). Let g ∈ G and a ∈ A. Then ϕ(gag−1) = ϕ(g)ϕ(a)ϕ(g)−1 ∈ ϕ(A)
because the normal subgroup ϕ(A) is closed under conjugation. Therefore, ϕ(gag−1) = ϕ(x) for some x ∈ A. But
this implies that gag−1 = xk for some k ∈ K. Finally, K ⊆ A so that gag−1 = xk ∈ A and so A is normal in G.�

Why lattice? A lattice L is a partially ordered set [a partial order is a relation that is reflexive: x ≤ x, anti-
symmetric: x ≤ y and y ≤ x implies x = y, and transitive: x ≤ y and y ≤ z implies x ≤ z] equipped with a notion
of meet and join – like a min and max [x ∧ y ≤ x and x ∧ y ≤ y and if z ≤ x and z ≤ y we have z ≤ x ∧ y, likewise
x ≤ x ∨ y and y ≤ x ∨ y and when x ≤ z and y ≤ z we have x ∨ y ≤ z]. In algebra, generally each object has a
corresponding lattice of subobjects. Notice that the subgroups of a group are partially ordered by set inclusion: ⊆,
given two subgroups, say A and B, their meet is the subgroup A ∩ B and their join is the subgroup generated by
A ∪ B (i.e., 〈A,B〉). In our theorem above, L and M are lattices. Notice that both L and M even have maximum
and minimum elements. The max of L is G and the min is K. The max of M is ϕ(G) and the min is {1}.

If one develops a theory of lattices, one can speak of lattice morphisms and isomorphisms. A lattice morphism
is a function between lattices that preserves the order relation and sends meets to meets and joins to joins. If such
a map is invertble, then we call it a lattice isomorphism. Notice that in the theorem above (1), (3), and (4) tell us
that Φ is a lattice isomorphism. Thus most of the Lattice Isomorphism Theorem is just telling us that the lattice of
subgroups of G containing the kernel is isomorphic to the lattice of subgroups of the range.
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We conclude with a few examples applying the Lattice Isomorphism Theorem to quotients (i.e., applying it to
projection homomorphism π : G→ G/N for some normal subgroup N).

Example: Let Q = {±1,±i,±j,±k} be the quaternion group. Then Z = Z(Q) = 〈−1〉 = {±1} / Q. The

subgroups of Q containing Z form a sublattice [we use double lines to highlight this portion] which is isomorphic to
the lattice of subgroups of Q/Z.

Q

〈j〉〈i〉 〈k〉

Z

{1}

Q/Z

〈j〉/Z〈i〉/Z 〈k〉/Z

{Z}

Note: The quaternion group is kind of a weirdo. It is a non-abelian group but all of it subgroups are normal
subgroups. Also, since its not abelian, it’s not cyclic. However, all of its proper subgroups (just exclude Q itself) are
cyclic. Since quotients of cyclic groups are cyclic groups and quotients of normal subgroups are normal subgroups,
all of the subgroups of Q/Z are cyclic (except Q/Z itself) and normal (in Q/Z).

Example: Let D4 = 〈x, y | x4 = 1, y2 = 1, (xy)2 = 1〉 = {1, x, x2, x3, y, xy, x2y, x3y} be the dihedral group of

order 8 (i.e., symmetries of a square). Then once again we will pick the center as our normal subgroup Z = Z(D4) =
〈x2〉 = {1, x2} / D4. The subgroups of D4 containing Z form a sublattice [we use double lines to highlight this
portion] which is isomorphic to the lattice of subgroups of D4/Z.

D4

〈x〉〈x2, y〉 〈x2, xy〉

Z = 〈x2〉〈x2y〉〈y〉 〈xy〉 〈x3y〉

{1}

D4/Z

〈x〉/Z〈x2, y〉/Z 〈x2, xy〉/Z

{Z}

Note: 〈x2, y〉 = {1, x2, y, x2y} and 〈x2, xy〉 = {1, x2, xy, x3y}. These two subgroups along with 〈x〉, the center
Z = 〈x2〉, and the trivial subgroup {1} are the normal subgroups of D4. The normal subgroups lying above Z
must map to normal subgroups of D4/Z. Thus all subgroups of D4/Z must be normal. This is true, but not very
interesting. Notice that D4/Z [like Q/Z above] is just the Klein 4-group (it’s abelian – so of course all of its subgroups
are normal).

One might see from the examples above how the structure of a quotient can inform us about a piece of the
structure of the original group. However, it also reveals limitations. Notice that Q and D4 are both non-abelian
groups of order 8. Both of them have (cyclic) centers of order 2. Both of them have a quotient (by their center)
isomorphic to the Klein 4-group. However, looking at the lattices to the left, they are quite different groups!
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